

# **APPEAL APPLICATION FORM** – APPEAL TO CITY COUNCIL

City Clerk's Office | 835 East 14th Street, San Leandro, CA 94577 | (510) 577-3367

General Info - Decisions of the Planning Commission may be appealed to City Council.

**Deadline to File** – This appeal application must be submitted within fifteen (15) calendar days of the decision, and within ten (10) calendar days of a Tentative Map approval. If the appeal period ends on a weekend or holiday, the appeal period ends the next business day.

**Fees** – An appeal by the project applicant requires either a Planning Deposit (if the appeal is made by the project applicant) or a fixed Planning Fee (if the appeal is made by any other party). Planning fees also includes a tech fee. Appeals are also subject to a City Clerk Fee. Credit/Debit Card fees apply, if any fees are paid by credit/debit card.

#### How to Submit an Appeal Application -

- Appeals must be filed in person at San Leandro City Hall, 835 East 14th Street, during business hours. To file an appeal, please bring:
  - a) Payment for Planning and City Clerk appeal fees
  - b) Signed and completed Appeal Application Form (front side).
  - c) Signed and completed Agreement for Payment of Planning Fees (back side) (for appeals filed by the project applicant only).
- Check in at the Permit Center on the 1<sup>st</sup> floor and indicate you are filing an appeal. A
  planner will assist you in verifying your appeal application is complete.
- 3) Pay the City Clerk Fee and the Planning Deposit/Fee. Obtain a copy of both receipts.
- 4) Planning staff will escort you to the City Clerk's Office, at 835 E 14th St, 2<sup>nd</sup> floor to complete the process. Do not go directly to the City Clerk's Office.

| OFFICIAL USE ONLY                                         |       |
|-----------------------------------------------------------|-------|
| DATE RECEIVED: CEIVED                                     | 1     |
| FEB 2 0 2025                                              |       |
| CITY CLERK'S OFFICE                                       | *     |
| APPEAL RECEIVED BY:                                       |       |
| CITY CLERK FEE RECEIPT NUMBER:                            |       |
| FY 2024-2025 City Clerk fee amount: \$556.00.             |       |
| PLANNING FEE RECEIPT NUMBER:                              |       |
| DEPOSIT (FY 2024-2025 amount: \$5,000)                    |       |
| ☐ FIXED FEE (FY 2024-2025 amount \$604.13)                |       |
| ☐ TECH FEE (FY 2024-2025 amount: 6% of fees)              |       |
| AGREEMENT FOR PAYMENT OF PLANNING ☐ SIGNED ☐ NOT REQUIRED | FEES: |
| CC: PLANNING CAO FINANCE                                  |       |

| I wish to appeal the decision of the Planning Com                          | mission.                                                  |
|----------------------------------------------------------------------------|-----------------------------------------------------------|
| I am: The Project Applicant (fill out back side too)                       | A Business Owner Other: ACCHEUED PARTY                    |
| The decision I am appealing was made on: 2/6/2025 (date decision was made) | and the decision was to Approve Deny the project below:   |
| Project Number: Project Address (or API                                    | N if address has not been issued):                        |
| PLN 2 2 _ 0 0 3 9 880 DOOLT                                                | TLE DA.                                                   |
| Reasons for Appeal (List all grounds relied upon in make                   | ring this appeal. Attach additional sheets if necessary.) |
| THE CAY VIOLATED CEQA BY AT                                                | PROVING THE PLOJECT, CELTHYING                            |
| THE EIR AND ADOPTING THE ST                                                |                                                           |
|                                                                            |                                                           |
| CONSIDERATIONS, APPEAL JUST                                                | TIFICATION LETTEL ATTACHED.                               |
|                                                                            |                                                           |
| DEAN WALLKASE, ADVOCATES A                                                 | FOR THE ENVIKUNMENT                                       |
| Mailing Address:                                                           | Phone Number:                                             |
| 10211 SUNCEND BLUD                                                         | (818) 650-0030 X/01                                       |
| SHADON HUS CA 91040                                                        | Email:                                                    |
| City State Zip                                                             | DWO AENV. ORG                                             |
| Signature of Appellant: Multiple                                           | Date Signed:                                              |
| CX VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV                                    | 417120                                                    |

February 14, 2025

# **Advocates for the Environment**

City Clerk's Office San Leandro City Hall 835 E 14th Street San Leandro, CA 94577 A non-profit public-interest law firm and environmental advocacy organization



Via in-person submission to the City Clerk's Office

Re: Appeal Justification for PLN 22-0039, 880 Doolittle Drive Industrial Project, SCH No. 202311059

Dear City Staff:

Please consider this letter as a formal notice and request for an appeal to the City Council of the Planning Commission's decision on February 6, 2025 to approve the 880 Doolittle Drive Industrial Project (**Project**) and certify the Environmental Impact Report (**EIR**) for the Project. The Project Site is located near Davis Street and Doolittle Drive in the City of San Leandro (**City**). The Project proposes to develop the 14.14-acre Project Site by constructing a 244,573 square-foot warehouse.

Advocates for the Environment submits the comments in this letter to provide specific reasons why the Project's Environmental Determination, including the Greenhouse-Gas (GHG) analysis, was legally inadequate and not in compliance with the California Environmental Quality Act (CEQA). The Planning Commission abused its discretion in approving the Project because the City violated CEQA by failing to include sufficient mitigation of the Project's significant GHG impact.

# **Background and Interest of Advocates for the Environment**

Advocates for the Environment is a non-profit public-interest environmental law firm and advocacy organization, and part of its mission is to use appropriate legal tools to reduce GHG emissions of development projects. We reviewed the EIR prepared in June 2024, and submitted comments regarding the sufficiency of the EIR's GHG analysis on July 29, 2024. We also reviewed the Final EIR which was prepared in January 2025, which we provided further comments on in our letter dated February 4, 2025. During the public hearing on February 6, 2025 at the City of San Leandro Planning Commission, the Project was approved.

The Commission determined that other factors outweighed the Project's environmental impact and approved the Project with a statement of overriding considerations. Yet, this decision was erroneous and an abuse of discretion because the City did not require mitigation of the significant GHG impact to the extent required by CEQA.

# **Rationale for Appeal**

The Planning Commission should not have approved this Project because the EIR violates CEQA. CEQA requires lead agencies to mitigate significant environmental impacts to the extent feasible when adopting a statement of overriding considerations. The City's determination that further mitigation would be infeasible is not supported by substantial evidence.

# **GHG Mitigation Measures were Insufficient Under CEQA**

The original Draft EIR did not include any mitigation measures. Based on the comments on the Draft EIR, the City added mitigation measure GHG-1 as a new mitigation measure to the Final EIR. Mitigation measure GHG-1 is as follows:

The building and its appliances (space heating, hot water heating, office cooking facilities, etc.) shall be all electric. Natural gas plumbing shall be permitted, activated and operated only for specific industrial or manufacturing processes that require natural gas as a critical component to that process or processes. The final site plans shall note that building appliances must be all electric. Building tenants shall be made aware of the restricted use of natural gas through language in the leasing and/or deed documentation.

(Final EIR, p. 41.)

The City proposes this mitigation measure as the maximum feasible mitigation for the Project's significant and unavoidable GHG impact. However, this mitigation measure is vague, unenforceable, and improperly deferred. Mitigation measures which postpone exact formulation should have specific performance standards, and here, the EIR does not define the circumstances in which natural gas will be permitted. It is not enforceable because there is no definition for when natural gas is a "critical component" or which manufacturing processes would "require" natural gas. Thus, there is no way to ensure that this mitigation measure will be implemented and it is not able to be monitored for compliance over time. The City should not delay or defer the decision-making for what constitutes an appropriate circumstance for permitting natural gas.

#### Infeasibility Finding Lacks Substantial Evidence

The conclusion that the Project will not be able to achieve any mitigation is not supported with substantial evidence. The EIR should have proposed mitigation measures to be applied to the maximum-feasible extent in order to justify the conclusion that the Project's GHG impact would be unavoidable due to lack of feasibility of mitigation. The EIR does not identify a single mitigation measure, beyond the Project features, nor explain why any mitigation whatsoever would be infeasible.

#### It Is Feasible to Adopt More Mitigation Measures

CEQA places the burden of proof of the infeasibility of mitigation on the City when it concludes the Project will have a significant and unavoidable impact. The City did not analyze any mitigation measures when concluding that the Project's GHG impact would be unavoidable. This not only fails to analyze and disclose adequate reasoning, to the detriment of the public and decision-makers, but also does not amount to substantial evidence to support the conclusion that the Project's impact would be significant and unavoidable.

The City and Applicant together can commit to design and technology specifications that reduce emissions, especially in the heavy-duty truck and transportation vehicle fleet. Further, the City can require the applicant to enter a contract with future tenants to use zero-emission commercial vehicles upon reasonable availability and maintain a charging system for the vehicle fleet that is powered by solar panels on the Project site. Thus, the conclusion that further mitigation is infeasible was not supported by substantial evidence.

### The Project's GHG Impacts Must be Fully Mitigated

CEQA requires that the Project include fair-share mitigation for all significant cumulative impacts. (Napa Citizens for Honest Gov't v. Napa County Board of Supervisors (2001) 91 Cal.App.4th 342, 364.) Here, this means mitigation of the full extent of the Project's GHG impacts. The EIR claims that no mitigation measures are feasible. But that conclusion is incorrect, and not supported by substantial evidence.

The amount of GHG emissions that comprises the Project's fair share is unclear. The EIR acknowledges that the Project would result in a significant and unavoidable impact on GHG emissions. However, it did not quantify the Projects MTCO2e emissions, nor did it identify the project's reasonable life span. As a result, the starting point from which to subtract the effect of additional non-offset mitigation measures, before implementing offset purchases is unknown.

CEQA requires all feasible mitigation. Mitigation measures need not reduce the significant environmental impact to the level of less-than-significance to be considered and adopted. Here, the City's responses demonstrate an erroneous interpretation of CEQA that would only require mitigation if it would reduce the Project's impact to a less-than-significant level, and because the City deemed that infeasible, they only adopted one mitigation measure aimed at reducing that single source of GHG emissions, and declined to adopt any mitigation measures that would reduce the Project's impact from the remaining sources of GHG emissions, including transportation and mobile sources from which the majority of the Project's emissions occur.

Under the Bay Area Air Quality Management District (BAAQMD) recommendations, the significance threshold chosen by the City, a project would have significant GHG emissions

unless it would have no natural gas infrastructure, which is related to GHG impact because burning natural gas releases GHGs. However, GHG impact as a category of CEQA analysis looks to the entirety of the GHG impact, cumulatively and over the lifetime of the Project from all direct and indirect sources of GHG emissions. Therefore, there are many measures that are unrelated to prohibiting natural gas that could serve to reduce the Project's GHG emissions, and ultimately, be effective and valid mitigation measures under CEQA.

The City determined that, other than banning natural gas infrastructure, there would be no measures that would reduce the Project's significant impact. The City's view of GHG impact as a binary choice between compliance with the BAAQMD equating to less than significance and non-compliance as significant—with no varying degree of impact in between—is contrary to logic, science, and contravenes the purpose of CEQA to fully disclose and mitigate significant impacts to the degree feasible. Even though the City declined to calculate the Project's quantitative contribution to GHG emissions, that does not change the fact that the Project's GHG emissions (and thereby GHG impact) would be reduced by GHG-reducing measures such as energy efficiency measures, solar panels, electric vehicle (EV) charging stations, transportation demand management plans, water conservation measures, idling limitations, and carbon offsets, among other feasible mitigation measures.

The City did not provide an explanation for why such measures would be infeasible. CEQA defines feasible as a measure which can be completed in a reasonable time frame, considering various factors. Rather than address any factors which would make measures infeasible, the City instead determined that no measures were necessary because based on the City's significance threshold, implementing non-natural gas related measures would not impact the ultimate significance conclusion. This is an improper analysis of feasible mitigation measures and does not fulfill the City's mitigation responsibility as the CEQA lead agency, which is to reduce any significant environmental impacts to the extent feasible, even if unable to achieve full mitigation to the less-than-significant extent.

# The City Can Prohibit Natural Gas Infrastructure in this Project as a GHG Mitigation Measure

The EIR determined that it is infeasible for this Project to comply with the recommendations of the BAAQMD because of the infeasibility of a natural gas ban. Yet, planning a Project which avoids natural gas infrastructure as a mitigation measure is not the same as passing a ban on natural gas infrastructure City-wide. Further, the City's interpretation and reliance on the 9th Circuit case, California Restaurant Association v. City of Berkeley, is flawed. The City asserts that, under its interpretation of the holding in California Restaurant Association v. City of Berkeley, the Energy Policy and Conservation Act (EPCA) preempts a City's ban of natural gas infrastructure because such infrastructure is necessary to support covered appliances under the EPCA. (See Final EIR, p. 39.)

However, the City misinterpreted the case. The court in California Restaurant Association v. City of Berkeley expressly noted that the EPCA's preemption is a narrow holding regarding modifications to building codes:

Though EPCA's preemption provision is broad, it is not unlimited. For instance, our holding here has nothing to say about a State or local government regulation of a utility's distribution of natural gas to premises where covered products might be used. We only decide that EPCA's preemptive scope applies to building codes that regulate the gas usage of covered appliances on premises where gas is otherwise available.

(California Rest. Ass'n v. City of Berkeley (9th Cir. 2024) 89 F.4th 1094, 1103.)

Overall, California Restaurant Association v. City of Berkeley is not controlling in this case, because it regards the legislative authority of a municipal corporation to enact building codes, rather than the authority granted under CEQA to mitigate significant environmental impacts of projects under its control. There is no legal authority holding that Federal preemption extends to mitigation measures required by CEQA. Further, it would not restrict any rights of individuals to use appliances covered under the EPCA if the City entered into an agreement with the applicant to restrict natural gas infrastructure as a matter of CEQA compliance and mitigation of the Project's significant GHG impact.

Accordingly, it is feasible to increase the stringency of mitigation measure GHG-1 to create a full prohibition of natural gas infrastructure in this Project, based on the significant environmental impact that would otherwise occur.

### Further Mitigation Is Required Beyond Prohibiting Natural Gas Infrastructure

GHG impact is inherently cumulative, so when a lead agency finds a significant GHG impact before mitigation, it is required to mitigate to the fair-share extent, not just below the level of significance. Here, this means mitigation of the full extent of the Project's GHG impacts. Mitigation measure GHG-1 alone is insufficient to account for mitigation of the fair-share of the Project's emissions, even if modified to fully prohibit natural gas infrastructure and bring the Project into consistency with the BAAQMD recommendations.

The City should have considered the entirety of the Project's GHG emissions sources, whether quantified or not, and determined appropriate mitigation measures each potential source of GHG emissions to reduce the Project's GHG impact to the maximum degree feasible.

## **Operational Emissions Reductions are Feasible**

There are several mitigation measures that are feasible, including renewable energy systems and batteries to power the facility during non-peak hours, solar water heaters, automatic light switches, among many other mitigation strategies that can be incorporated in

the project as design features or as mitigation measures. Such features could be adopted individually or as part of a comprehensive goal of sustainable building certification, such as Leadership and Energy and Environmental Design (LEED), that extends further beyond CALGreen requirements.

Solar panel installation or incorporating renewable energy production on-site is also a feasible mitigation measure. The DEIR indicates that the Project will comply with Title 24 requirements. (DEIR, p. 4.1-11.) However, Title 24 mandates only that a minimum of 15 percent of the roof area be solar-ready. Extending this requirement to cover the maximum available surface area, rather than just the minimum 15 percent required would be feasible. Additionally, installing solar panels across the entire available roof surface would also be a feasible measure. Having solar panels capable of offsetting 100% of the buildings' energy demands would enhance the effectiveness and decrease GHG emissions overall.

Likewise, the DEIR specifies the installation of charging stations required by Title 24, in this case, 21 electric vehicle (EV) charging stations. (DEIR, p. 4.1-11.) There is no evidence that it would be infeasible to install more charging stations beyond the proposed 21 stations. Overall, there are more options available to mitigate emissions to the full extent of project emissions.

#### Offsets Are Feasible

After requiring operational emissions reductions to the maximum feasible extent, the City could also require the Applicant to purchase offsets for the Project's remaining GHG emissions. The City did not provide any evidence for why offsets would be infeasible. Offsets are acceptable mitigation measures under CEQA (See CEQA Guidelines § 15126.4 (c)(3).) Overall, there are more options available to mitigate emissions to the full extent of project emissions, and the City failed to acknowledge or implement many mitigation measures that are feasible and could help reduce the Project's GHG impact to the fair share extent.

#### Conclusion

For the foregoing reasons, the EIR violates CEQA. In particular, the EIR fails to require all feasible mitigation, despite concluding that the significant GHG impact will be unavoidable. The vast majority of the Project's emissions are from mobile sources, such as truck trips due to project operations. The adopted mitigation would not sufficiently address GHG impact because it is only focused on building-related GHG emissions.

The lead agency has not met its burden of showing that any further mitigation measures would be infeasible, and therefore the EIR should not have been certified without all feasible mitigation, including offsets incorporated. Thus, the Planning Commission should have

rejected the Project and declined to certify the EIR, or at least should have continued the Project for another date if and until the EIR is amended in conformance with CEQA.

Sincerely,

Dean Wallraff, Attorney at Low

Executive Director, Advocates for the Environment



# **APPEAL APPLICATION FORM - APPEAL TO CITY COUNCIL**

City Clerk's Office | 835 East 14th Street, San Leandro, CA 94577 | (510) 577-3367

General Info - Decisions of the Planning Commission may be appealed to City Council.

**Deadline to File** – This appeal application must be submitted within fifteen (15) calendar days of the decision, and within ten (10) calendar days of a Tentative Map approval. If the appeal period ends on a weekend or holiday, the appeal period ends the next business day.

**Fees** – An appeal by the project applicant requires either a Planning Deposit (if the appeal is made by the project applicant) or a fixed Planning Fee (if the appeal is made by any other party). Planning fees also includes a tech fee. Appeals are also subject to a City Clerk Fee. Credit/Debit Card fees apply, if any fees are paid by credit/debit card.

#### How to Submit an Appeal Application -

- 1) Appeals must be filed in person at San Leandro City Hall, 835 East 14th Street, during business hours. To file an appeal, please bring:
  - a) Payment for Planning and City Clerk appeal fees
  - b) Signed and completed Appeal Application Form (front side).
  - c) Signed and completed Agreement for Payment of Planning Fees (back side) (for appeals filed by the project applicant only).
- Check in at the Permit Center on the 1<sup>st</sup> floor and indicate you are filing an appeal. A
  planner will assist you in verifying your appeal application is complete.
- 3) Pay the City Clerk Fee and the Planning Deposit/Fee. Obtain a copy of both receipts.
- 4) Planning staff will escort you to the City Clerk's Office, at 835 E 14th St, 2nd floor to complete the process. Do not go directly to the City Clerk's Office.

| -                                           | OFFICIAL USE ONLY                                                   |  |  |
|---------------------------------------------|---------------------------------------------------------------------|--|--|
| DAT                                         | RECEIVED                                                            |  |  |
|                                             | FEB 2 1 2025                                                        |  |  |
|                                             | CITY CLERK'S OFFICE                                                 |  |  |
|                                             | EAL RECEIVED BY:                                                    |  |  |
|                                             | CLERK FEE RECEIPT NUMBER:  24-2025 City Clerk fee amount: \$556.00. |  |  |
|                                             | NNING FEE RECEIPT NUMBER:                                           |  |  |
| □ p                                         | EPOSIT (FY 2024-2025 amount: \$5,000)                               |  |  |
| ☐ FIXED FEE (FY 2024-2025 amount: \$604.13) |                                                                     |  |  |
| ☐ TI                                        | ECH FEE (FY 2024-2025 amount:: 6% of fees)                          |  |  |
| AGRE                                        |                                                                     |  |  |
|                                             | EEMENT FOR PAYMENT OF PLANNING FEES:<br>GNED                        |  |  |

| I wish to appeal the decision of the Planning Commission.  I am:   The Project Applicant (fill out back side too)   A Resident   A Business Owner   Other: Local Labor Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| The decision I am appealing was made on:    02/06/2025   (date decision was made)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , and the decision was to Approve Deny the project below:                                               |  |  |
| Project Number:         Project Address (or Ad | APN if address has not been issued): Drive                                                              |  |  |
| Reasons for Appeal (List all grounds relied upon in many Planning Commission's certification of FEIR viola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | naking this appeal. Attach additional sheets if necessary.) ted CEQA because FEIR failed to adequately: |  |  |
| 1. analyze energy use impacts, 2. mitigate GHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and biological resources impacts, and                                                                   |  |  |
| 3. analyze and support noise/vibration mitigatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n measures                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLEASE SEE ATTACHED LETTER                                                                              |  |  |
| Print Full Name:<br>Mitchell M. Tsai Law Firm / Carpenters Local Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ion #713                                                                                                |  |  |
| Mailing Address: 139 S. Hudson Avenue, Suite 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phone Number:<br>(626) 314-3821                                                                         |  |  |
| Pasadena CA 91101  City State Zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Email:<br>jeremyh@mitchtsailaw.com; info@mitchtsailaw.com                                               |  |  |
| Signature of Appellant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date Signed: February 21, 2025                                                                          |  |  |

Mitchell M. Tsai

P: (626) 314-3821 F: (626) 389-5414 E: info@mitchtsailaw.com 139 South Hudson Avenue Suite 200 Pasadena, California 91101

#### **VIA PERSONAL DELIVERY**

February 20, 2025

City Clerk City of San Leandro San Leandro City Hall 835 East 14th Street San Leandro, CA

RE: <u>City of San Leandro, 880 Doolittle Drive Project (SCH#</u>
2023110597) - Appeal of Planning Commission Approval of Project

Dear Mayor González and Distinguished Councilmembers,

On behalf of the Carpenters Local Union #713 ("Local 713"), our firm is submitting this appeal justification letter in connection with the February 6, 2025, approval by the City of San Leandro's ("City") Planning Commission of the 880 Doolittle Drive Project ("Project") and its certification of the Final Environmental Impact Report ("FEIR") in connection therewith.

The Project's Notice of Availability ("NOA") for the DEIR contains the following Project Description:

The proposed project consists of consolidating the two parcels comprising the project site into a single parcel, demolishing existing vacant structures, and developing a new industrial shell building on the site. The proposed project also includes a new surface parking lot, internal circulation roadways, landscaping, and new utility connections, including natural gas. The proposed warehouse would be approximately 244,573 square feet, comprised of a 229,573 square-foot of warehouse and 15,000 square feet of associated office space. Approximately 10,000 square feet of office space would be provided on the ground floor, and approximately 5,000 square feet of office space would be on a mezzanine level. The maximum building height would be 50 feet with an interior clear height of 40 feet. Sixty-four loading docks are proposed. Traditional doors for egress and ingress to the building would also be provided.

City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 2 of 11

Access to the project site would be from the existing driveway on Doolittle Drive in the southwest area of the site, and from an existing driveway the end of Hester Street in the northern area of the site. The proposed project would include reconstruction of the driveways to meet City standards and current ADA requirements. Additionally, a new, second, driveway to the site would be constructed at the end of Hester Street, providing a total of three driveways. A total of 204 parking spaces would be provided on-site for passenger vehicles, which would be located primarily in a new surface parking lot on the west side of the proposed building. Approximately 59 parking spaces sized for tractor trailers would be on the north side of the warehouse. A total of 24 bicycle parking spaces would be provided.

The project would require a Use Permit, Site Plan Review, Height Exception, Building Permit, Grading Permit, and Tree Removal Permit. The project may also require approval(s) from the Federal Aviation Administration and the Department of Toxic Substances Control.

# NOA of DEIR, p. 1.

Local 713 represents thousands of union carpenters in Alameda County and has a strong interest in well-ordered land use planning and in addressing the environmental impacts of development projects.

Individual members of Local 713 live, work, and recreate in the City and surrounding communities and would be directly affected by the Project's environmental impacts.

Local 713 expressly reserves the right to supplement these comments at or prior to hearings on the Project, and at any later hearing and proceeding related to this Project. Gov. Code, § 65009, subd. (b); Pub. Res. Code, § 21177, subd. (a); see *Bakersfield Citizens for Local Control v. Bakersfield* (2004) 124 Cal.App.4th 1184, 1199-1203; see also *Galante Vineyards v. Monterey Water Dist.* (1997) 60 Cal.App.4th 1109, 1121.

Local 713 incorporates by reference all comments related to the Project or its CEQA review, including the Environmental Impact Report. See *Citizens for Clean Energy v City of Woodland* (2014) 225 Cal.App.4th 173, 191 (finding that any party who has objected to the project's environmental documentation may assert any issue timely raised by other parties).

City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 3 of 11

This appeal is filed pursuant to San Leandro Zoning Code §§ 5.08.132 and 5.20.100, et seq. and San Leandro Municipal Code § 1-3-415. This appeal letter, Local 713's attached February 6, 2025, comment letter to the Planning Commission (attached hereto as **Exhibit A**), and its prior written comments concerning the Project, demonstrate that the Planning Commission's decision to approve the Project and certify the EIR violated CEQA. To that end, the decisions/resolutions adopted by the Planning Commission are not supported by evidence in the record, as the FEIR for the Project remains subject to numerous deficiencies that violate CEQA and it cannot permissibly be certified by the City in its current form. As discussed in greater detail below, those deficiencies include, but are not limited to, the EIR's failures (1) to adequately analyze the Project's energy use impacts, (2) to adequately mitigate the Project's significant and unavoidable greenhouse gas emissions impacts to the maximum extent feasible, (3) to adequately mitigate the Project's impacts on biological resources, and (4) to provide adequate analysis to support one of the Project's proposed noise/vibration mitigation measures.

The prior comments by Local 713 and other concerned parties identified various flaws in the City's environmental analysis, and provided new information and substantial evidence demonstrating that the FEIR fails as an informational document under CEQA.

# I. THE CITY SHOULD REQUIRE THE USE OF A LOCAL WORKFORCE TO BENEFIT THE COMMUNITY'S ECONOMIC DEVELOPMENT AND ENVIRONMENT

The City should require the Project to be built by contractors who participate in a Joint Labor-Management Apprenticeship Program approved by the State of California and make a commitment to hiring a local workforce.

Community benefits such as local hire can also be helpful to reduce environmental impacts and improve the positive economic impact of the Project. Local hire provisions requiring that a certain percentage of workers reside within 10 miles or less of the Project site can reduce the length of vendor trips, reduce greenhouse gas emissions, and provide localized economic benefits. As environmental consultants Matt Hagemann and Paul E. Rosenfeld note:

[A]ny local hire requirement that results in a decreased worker trip length from the default value has the potential to result in a reduction of construction-related GHG emissions, though the significance of the City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 4 of 11

reduction would vary based on the location and urbanization level of the project site.

March 8, 2021 SWAPE Letter to Mitchell M. Tsai re Local Hire Requirements and Considerations for Greenhouse Gas Modeling.

Workforce requirements promote the development of skilled trades that yield sustainable economic development. As the California Workforce Development Board and the University of California, Berkeley Center for Labor Research and Education concluded:

[L]abor should be considered an investment rather than a cost—and investments in growing, diversifying, and upskilling California's workforce can positively affect returns on climate mitigation efforts. In other words, well-trained workers are key to delivering emissions reductions and moving California closer to its climate targets.<sup>1</sup>

Furthermore, workforce policies have significant environmental benefits given that they improve an area's jobs-housing balance, decreasing the amount and length of job commutes and the associated greenhouse gas (GHG) emissions. In fact, on May 7, 2021, the South Coast Air Quality Management District found that that the "[u]se of a local state-certified apprenticeship program" can result in air pollutant reductions.<sup>2</sup>

Locating jobs closer to residential areas can have significant environmental benefits. As the California Planning Roundtable noted in 2008:

People who live and work in the same jurisdiction would be more likely to take transit, walk, or bicycle to work than residents of less balanced communities and their vehicle trips would be shorter. Benefits would

<sup>&</sup>lt;sup>1</sup> California Workforce Development Board (2020) Putting California on the High Road: A Jobs and Climate Action Plan for 2030 at p. ii, *available at* <a href="https://laborcenter.berkeley.edu/wp-content/uploads/2020/09/Putting-California-on-the-High-Road.pdf">https://laborcenter.berkeley.edu/wp-content/uploads/2020/09/Putting-California-on-the-High-Road.pdf</a>.

<sup>&</sup>lt;sup>2</sup> South Coast Air Quality Management District (May 7, 2021) Certify Final Environmental Assessment and Adopt Proposed Rule 2305 – Warehouse Indirect Source Rule – Warehouse Actions and Investments to Reduce Emissions Program, and Proposed Rule 316 – Fees for Rule 2305, Submit Rule 2305 for Inclusion Into the SIP, and Approve Supporting Budget Actions, *available at* <a href="http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2021/2021-May7-027.pdf?sfvrsn=10">http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2021/2021-May7-027.pdf?sfvrsn=10</a>.

City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 5 of 11

include potential reductions in both vehicle miles traveled and vehicle hours traveled.<sup>3</sup>

Moreover, local hire mandates and skill-training are critical facets of a strategy to reduce vehicle miles traveled (VMT). As planning experts Robert Cervero and Michael Duncan have noted, simply placing jobs near housing stock is insufficient to achieve VMT reductions given that the skill requirements of available local jobs must match those held by local residents.<sup>4</sup> Some municipalities have even tied local hire and other workforce policies to local development permits to address transportation issues. Cervero and Duncan note that:

In nearly built-out Berkeley, CA, the approach to balancing jobs and housing is to create local jobs rather than to develop new housing. The city's First Source program encourages businesses to hire local residents, especially for entry- and intermediate-level jobs, and sponsors vocational training to ensure residents are employment-ready. While the program is voluntary, some 300 businesses have used it to date, placing more than 3,000 city residents in local jobs since it was launched in 1986. When needed, these carrots are matched by sticks, since the city is not shy about negotiating corporate participation in First Source as a condition of approval for development permits.

Recently, the State of California verified its commitment towards workforce development through the Affordable Housing and High Road Jobs Act of 2022, otherwise known as Assembly Bill No. 2011 ("AB2011"). AB2011 amended the Planning and Zoning Law to allow ministerial, by-right approval for projects being built alongside commercial corridors that meet affordability and labor requirements.

The City should consider utilizing local workforce policies and requirements to benefit the local area economically and to mitigate greenhouse gas, improve air quality, and reduce transportation impacts.

<sup>&</sup>lt;sup>3</sup> California Planning Roundtable (2008) Deconstructing Jobs-Housing Balance at p. 6, available at <a href="https://cproundtable.org/static/media/uploads/publications/cpr-jobs-housing.pdf">https://cproundtable.org/static/media/uploads/publications/cpr-jobs-housing.pdf</a>

<sup>&</sup>lt;sup>4</sup> Cervero, Robert and Duncan, Michael (2006) Which Reduces Vehicle Travel More: Jobs-Housing Balance or Retail-Housing Mixing? Journal of the American Planning Association 72 (4), 475-490, 482, *available at* <a href="http://reconnectingamerica.org/assets/Uploads/UTCT-825.pdf">http://reconnectingamerica.org/assets/Uploads/UTCT-825.pdf</a>.

City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 6 of 11

# II. THE PLANNING COMMISSION APPROVED THE PROJECT IN VIOLATION OF THE CALIFORNIA ENVIRONMENTAL QUALITY ACT

# A. Background Concerning the California Environmental Quality Act

The California Environmental Quality Act ("CEQA") is a California statute designed to inform decision-makers and the public about the potential significant environmental effects of a project. 14 California Code of Regulations ("CEQA Guidelines"), § 15002, subd. (a)(1).<sup>5</sup> At its core, its purpose is to "inform the public and its responsible officials of the environmental consequences of their decisions before they are made." Citizens of Goleta Valley v. Board of Supervisors (1990) 52 Cal.3d 553, 564.

The preparation and circulation of an EIR is more than a set of technical hurdles for agencies and developers to overcome. Communities for a Better Environment v. Richmond (2010) 184 Cal. App. 4th 70, 80 (quoting Vineyard Area Citizens for Responsible Growth, Inc. v. City of Rancho Cordova (2007) 40 Cal. 4th 412, 449-450). The EIR's function is to ensure that government officials who decide to build or approve a project do so with a full understanding of the environmental consequences and, equally important, that the public is assured those consequences have been considered. Id. For the EIR to serve these goals it must present information so that the foreseeable impacts of pursuing the project can be understood and weighed, and the public must be given an adequate opportunity to comment on that presentation before the decision to go forward is made. Id.

It is the duty of the lead agency, not the public, to conduct the proper environmental studies. "The agency should not be allowed to hide behind its own failure to gather relevant data." *Sundstrom, supra*, 202 Cal.App.3d at p. 311. "Deficiencies in the record may actually enlarge the scope of fair argument by lending a logical plausibility to a wider range of inferences." *Ibid*; see also *Gentry v. City of Murrieta* (1995) 36 Cal.App.4th 1359, 1382 (lack of study enlarges the scope of the fair argument which may be made based on the limited facts in the record).

-

The CEQA Guidelines, codified in Title 14 of the California Code of Regulations, section 15000 et seq., are regulatory guidelines promulgated by the state Natural Resources Agency for the implementation of CEQA. Cal. Pub. Res. Code, § 21083. The CEQA Guidelines are given "great weight in interpreting CEQA except when . . . clearly unauthorized or erroneous." Center for Biological Diversity v. Dept. of Fish & Wildlife (2015) 62 Cal.4th 204, 217.

City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 7 of 11

While the courts review an EIR using an 'abuse of discretion' standard, the reviewing court is not to uncritically rely on every study or analysis presented by a project proponent in support of its position. Berkeley Keep Jets, supra, 91 Cal.App.4th at p. 1355 (quoting Laurel Heights, supra, 47 Cal.3d at pp. 391, 409 fn. 12) (internal quotations omitted). A clearly inadequate or unsupported study is entitled to no judicial deference. Ibid. Drawing this line and determining whether the EIR complies with CEQA's information disclosure requirements presents a question of law subject to independent review by the courts. Sierra Club v. County of Fresno (2018) 6 Cal.5th 502, 515; Madera Oversight Coalition, Inc. v. County of Madera (2011) 199 Cal.App.4th 48, 102, 131. As the First District Court of Appeal has previously stated, prejudicial abuse of discretion occurs if the failure to include relevant information precludes informed decision-making and informed public participation, thereby thwarting the statutory goals of the EIR process. Berkeley Keep Jets, supra, 91 Cal.App.4th at p. 1355 (internal quotations omitted).

Both the review for failure to follow CEQA's procedures and the fair argument test are questions of law, thus, the de novo standard of review applies. Vineyard Area Citizens for Responsible Growth v. City of Rancho Cordova (2007) 40 Cal.4th 412, 435. Whether the agency's record contains substantial evidence that would support a fair argument that the project may have a significant effect on the environment is treated as a question of law. Consolidated Irrigation Dist., supra, 204 Cal.App.4th at p. 207; Kostka and Zischke, Practice Under the Environmental Quality Act (2017, 2d ed.) at § 6.76.

1. CEQA Requires Subsequent or Supplemental Environmental Review When Substantial Changes or New Information Comes to Light

Section 21092.1 of the California Public Resources Code requires that "[w]hen significant new information is added to an environmental impact report after notice has been given pursuant to Section 21092 ... but prior to certification, the public agency shall give notice again pursuant to Section 21092, and consult again pursuant to Sections 21104 and 21153 before certifying the environmental impact report" in order to give the public a chance to review and comment upon the information. (CEQA Guidelines § 15088.5.)

Significant new information includes "changes in the project or environmental setting as well as additional data or other information" that "deprives the public of a meaningful opportunity to comment upon a substantial adverse environmental effect

City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 8 of 11

of the project or a feasible way to mitigate or avoid such an effect (including a feasible project alternative)." (CEQA Guidelines § 15088.5(a).) Examples of significant new information requiring recirculation include "new significant environmental impacts from the project or from a new mitigation measure," "substantial increase in the severity of an environmental impact," "feasible project alternative or mitigation measure considerably different from others previously analyzed" as well as when "the draft EIR was so fundamentally and basically inadequate and conclusory in nature that meaningful public review and comment were precluded." (*Id.*)

An agency has an obligation to recirculate an environmental impact report for public notice and comment due to "significant new information" regardless of whether the agency opts to include it in a project's environmental impact report. (Cadiz Land Co. v. Rail Cycle (2000) 83 Cal. App. 4th 74, 95 [finding that in light of a new expert report disclosing potentially significant impacts to groundwater supply "the EIR should have been revised and recirculated for purposes of informing the public and governmental agencies of the volume of groundwater at risk and to allow the public and governmental agencies to respond to such information."].) If significant new information was brought to the attention of an agency prior to certification, an agency is required to revise and recirculate that information as part of the environmental impact report.

# B. The FEIR Fails to Include Necessary Information, Analysis, and Mitigation Requested in Past Comment Letters.

In the FEIR, the City declined, without adequate justification, to address the concerns raised by Local 713 and other interested parties regarding the Project's DEIR. Most notably, the FEIR dismissed and downplayed the EIR's obligation to mitigate the Project's significant and unavoidable impacts related to greenhouse gas emissions. To that end, the FEIR failed and refused to incorporate additional mitigation measures to account for and offset the fact the Project was determined to have significant and unavoidable greenhouse gas impacts resulting from the construction and inclusion of natural gas infrastructure in the Project. The FEIR has engaged in an illogical and unreasonable calculus that, because the Project was under a purported legal requirement to include natural gas supply infrastructure in its construction, there would be no further means of limiting the Project's greenhouse gas emissions impacts because other mitigation measures could not reduce the amount of natural gas consumed by the Project. This rationale betrays an apparent lack of understanding

City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 9 of 11

regarding the nature of greenhouse gas emissions impacts and the concept of offsetting such emissions. Indeed, at bottom, the Project could even do as little purchase reputable carbon credits to offset (i.e., mitigate) the anticipated added greenhouse gas emissions posed by the inclusion of natural gas infrastructure at the Project in pursuit of achieving the regulatory goal of net-zero. However, the FEIR inexplicably declined to do so, treating the impacts of the Project's anticipated natural gas combustion, and the mitigation thereof, in complete isolation from other greenhouse gas mitigation strategies. This approach flies directly in the face of the CEQA requirement that an EIR mitigate any significant and unavoidable impacts to the maximum extent feasible, and as such, the FEIR as currently constituted violates CEQA.

Additionally, the FEIR failed to address and resolve Local 713's concerns regarding the Project's energy use impacts and the lack of appropriate analysis demonstrating that the Project's anticipated regulatory compliance would yield less than significant energy use impacts. To the extent that the City claims regulatory compliance will reduce the Project's energy use impacts to less than significant levels, it must base that determination on Project-specific analysis of the potential impacts and the effect that regulatory compliance will have on those impacts. (See Californians for Alternatives to Toxics v. Department of Food & Agric. (2005) 136 Cal. App. 4th 1; Ebbetts Pass Forest Watch v Department of Forestry & Fire Protection (2008) 43 Cal. App. 4th 936, 956.) Again, it will amount to a violation of CEQA for the City to certify the FEIR on the bare conclusion, without additional analysis, that the Project's compliance with state and local policies and regulations will categorically reduce energy use impacts below the threshold of significance.

Further still, the FEIR has declined to provide adequate analysis to support its attempted mitigation of the Project's biological resources impacts. In that regard, as a basis for refusing to modify the nature and extent of biological surveys included in its mitigation measures, the FEIR asserts that the street trees to be removed at the Project Site are not suitable candidates for raptor nesting without providing any evidence, studies, or other documentation to support that notion. To the extent that the FEIR is inclined to dismiss the applicability of certain CDFW guidance as to bird/raptor nesting season on the Project, the City must do more to substantiate that position. CEQA requires that the City provide substantial evidence to support such a

City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 10 of 11

notion where, as here, it is faced with significant new information regarding the Project's biological resources impacts.

Finally, the FEIR completely fails and refuses to address the concerns raised by Local 713 concerning the Project's noise/vibration mitigation measure, MM-NOI-2. Indeed, Local 713 resubmits that the mitigation measure is not supported by adequate evidence and study to demonstrate that use of a vibratory roller at 16-25 feet of distance from neighboring structures will not cause structural damage. Thus, as currently crafted, the mitigation measure leaves open the significant possibility of neighboring structural damage via the nature of vibratory roller use that the FEIR has sanctioned for the Project. The FEIR was required to perform further analysis and study to confirm that such vibration impacts would be mitigated to the maximum extent possible, but it has maintained its failure to do so in violation of CEQA.

Accordingly, and for the reasons set forth herein and in the attached Exhibit A, the City Council should grant this appeal, reversing the approvals of the Planning Commission for the Project, and rejecting the Planning Commission's certification of the Project's EIR, pending the revision and recirculation of it to address these issues, and others identified by the commenting parties.

#### III. CONCLUSION

Based on the foregoing, Local 713 requests that the City Council grant this appeal, thereby reversing the Planning Commission's approval for the Project, pending the required revision and recirculation of the FEIR to first address the areas of concern including the Project's greenhouse gas emissions mitigation, analysis of energy use impacts, biological resources mitigation measures, and noise/vibration impact analysis and mitigation. Thank you for your consideration. If the City has any questions, please do not hesitate to contact our office.

Sincerely,

Jeremy Herwitt

Attorneys for Carpenters Local Union #713

City of San Leandro – 880 Doolittle Drive Industrial Project February 20, 2025 Page 11 of 11

# Attached:

February 6, 2025, Mitchell M. Tsai Law Firm Letter to City of San Leandro Planning Commission (**Exhibit A**)

P: (626) 314-3821 F: (626) 389-5414 E: info@mitchtsailaw.com



139 South Hudson Avenue Suite 200 Pasadena, California 91101

## VIA E-MAIL

February 6, 2025

Planning Commission City of San Leandro 835 East 14th Street San Leandro, California 94577

Ph: (510) 577-3325

Em: clerk@sanleandro.org

Cindy Lemaire, AICP, CNU-A

Senior Planner

Community Development Department

City of San Leandro 835 East 14th Street

San Leandro, California 94577

Ph: (510) 577-3325

Em: clemaire@sanleandro.org

RE: February 6, 2025 Planning Commission Meeting –

Agenda Item No. 7.A - City of San Leandro's 880 Doolittle Drive

Project – Final Environmental Impact Report (SCH# 2023110597)

Dear Honorable Commissioners and Cindy Lemaire,

On behalf of the Carpenters Union Local #713 ("Local 713"), our firm is submitting these comments for Agenda Item No. 7.A of the City of San Leandro's ("City") February 6, 2025, Planning Commission meeting concerning the hearing on the 880 Doolittle Drive Project ("Project") and the Draft Environmental Impact Report ("DEIR") and Final Environmental Impact Report ("FEIR") prepared by the City in connection therewith.

The Project's Notice of Availability ("NOA") for the DEIR contains the following Project Description:

The proposed project consists of consolidating the two parcels comprising the project site into a single parcel, demolishing existing vacant structures, and developing a new industrial shell building on the site. The proposed project also includes a new surface parking lot, internal circulation roadways, landscaping, and new utility connections, including natural gas. The proposed warehouse would be approximately 244,573 square feet, comprised of a 229,573 square-foot of warehouse and 15,000 square feet of associated office space. Approximately 10,000 square feet

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 2 of 26

of office space would be provided on the ground floor, and approximately 5,000 square feet of office space would be on a mezzanine level. The maximum building height would be 50 feet with an interior clear height of 40 feet. Sixty-four loading docks are proposed. Traditional doors for egress and ingress to the building would also be provided.

Access to the project site would be from the existing driveway on Doolittle Drive in the southwest area of the site, and from an existing driveway the end of Hester Street in the northern area of the site. The proposed project would include reconstruction of the driveways to meet City standards and current ADA requirements. Additionally, a new, second, driveway to the site would be constructed at the end of Hester Street, providing a total of three driveways. A total of 204 parking spaces would be provided on-site for passenger vehicles, which would be located primarily in a new surface parking lot on the west side of the proposed building. Approximately 59 parking spaces sized for tractor trailers would be on the north side of the warehouse. A total of 24 bicycle parking spaces would be provided.

The project would require a Use Permit, Site Plan Review, Height Exception, Building Permit, Grading Permit, and Tree Removal Permit. The project may also require approval(s) from the Federal Aviation Administration and the Department of Toxic Substances Control.

# NOA of DEIR, p. 1.

Local 713 represents thousands of union carpenters in Alameda County and has a strong interest in well-ordered land use planning and in addressing the environmental impacts of development projects.

Individual members of Local 713 live, work, and recreate in the City and surrounding communities and would be directly affected by the Project's environmental impacts.

Local 713 expressly reserves the right to supplement these comments at or prior to hearings on the Project, and at any later hearing and proceeding related to this Project. Gov. Code, § 65009, subd. (b); Pub. Res. Code, § 21177, subd. (a); see *Bakersfield Citizens for Local Control v. Bakersfield* (2004) 124 Cal.App.4th 1184, 1199-1203; see also *Galante Vineyards v. Monterey Water Dist.* (1997) 60 Cal.App.4th 1109, 1121.

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 3 of 26

Local 713 incorporates by reference all comments related to the Project or its CEQA review, including the Environmental Impact Report ("EIR"). See *Citizens for Clean Energy v City of Woodland* (2014) 225 Cal.App.4th 173, 191 (finding that any party who has objected to the project's environmental documentation may assert any issue timely raised by other parties).

Moreover, Local 713 requests that the City provide notice for any and all notices referring or related to the Project issued under the California Environmental Quality Act (CEQA) (Pub. Res. Code, § 21000 et seq.), and the California Planning and Zoning Law ("Planning and Zoning Law") (Gov. Code, § 65000–65010). California Public Resources Code Sections 21092.2, and 21167(f) and California Government Code Section 65092 require agencies to mail such notices to any person who has filed a written request for them with the clerk of the agency's governing body.

# I. THE CITY SHOULD REQUIRE THE USE OF A LOCAL WORKFORCE TO BENEFIT THE COMMUNITY'S ECONOMIC DEVELOPMENT AND ENVIRONMENT

The City should require the Project to be built by contractors who participate in a Joint Labor-Management Apprenticeship Program approved by the State of California and make a commitment to hiring a local workforce.

Community benefits such as local hire can also be helpful to reduce environmental impacts and improve the positive economic impact of the Project. Local hire provisions requiring that a certain percentage of workers reside within 10 miles or less of the Project site can reduce the length of vendor trips, reduce greenhouse gas emissions, and provide localized economic benefits. As environmental consultants Matt Hagemann and Paul E. Rosenfeld note:

[A]ny local hire requirement that results in a decreased worker trip length from the default value has the potential to result in a reduction of construction-related GHG emissions, though the significance of the reduction would vary based on the location and urbanization level of the project site.

March 8, 2021 SWAPE Letter to Mitchell M. Tsai re Local Hire Requirements and Considerations for Greenhouse Gas Modeling.

Workforce requirements promote the development of skilled trades that yield sustainable economic development. As the California Workforce Development Board

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 4 of 26

and the University of California, Berkeley Center for Labor Research and Education concluded:

[L]abor should be considered an investment rather than a cost—and investments in growing, diversifying, and upskilling California's workforce can positively affect returns on climate mitigation efforts. In other words, well-trained workers are key to delivering emissions reductions and moving California closer to its climate targets.<sup>1</sup>

Furthermore, workforce policies have significant environmental benefits given that they improve an area's jobs-housing balance, decreasing the amount and length of job commutes and the associated greenhouse gas (GHG) emissions. In fact, on May 7, 2021, the South Coast Air Quality Management District found that that the "[u]se of a local state-certified apprenticeship program" can result in air pollutant reductions.<sup>2</sup>

Locating jobs closer to residential areas can have significant environmental benefits. As the California Planning Roundtable noted in 2008:

People who live and work in the same jurisdiction would be more likely to take transit, walk, or bicycle to work than residents of less balanced communities and their vehicle trips would be shorter. Benefits would include potential reductions in both vehicle miles traveled and vehicle hours traveled.<sup>3</sup>

Moreover, local hire mandates and skill-training are critical facets of a strategy to reduce vehicle miles traveled (VMT). As planning experts Robert Cervero and Michael Duncan have noted, simply placing jobs near housing stock is insufficient to achieve VMT reductions given that the skill requirements of available local jobs must

<sup>&</sup>lt;sup>1</sup> California Workforce Development Board (2020) Putting California on the High Road: A Jobs and Climate Action Plan for 2030 at p. ii, *available at* <a href="https://laborcenter.berkeley.edu/wp-content/uploads/2020/09/Putting-California-on-the-High-Road.pdf">https://laborcenter.berkeley.edu/wp-content/uploads/2020/09/Putting-California-on-the-High-Road.pdf</a>.

<sup>&</sup>lt;sup>2</sup> South Coast Air Quality Management District (May 7, 2021) Certify Final Environmental Assessment and Adopt Proposed Rule 2305 – Warehouse Indirect Source Rule – Warehouse Actions and Investments to Reduce Emissions Program, and Proposed Rule 316 – Fees for Rule 2305, Submit Rule 2305 for Inclusion Into the SIP, and Approve Supporting Budget Actions, *available at* <a href="http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2021/2021-May7-027.pdf?sfvrsn=10.">http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2021/2021-May7-027.pdf?sfvrsn=10.</a>

<sup>&</sup>lt;sup>3</sup> California Planning Roundtable (2008) Deconstructing Jobs-Housing Balance at p. 6, available at <a href="https://cproundtable.org/static/media/uploads/publications/cpr-jobs-housing.pdf">https://cproundtable.org/static/media/uploads/publications/cpr-jobs-housing.pdf</a>

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 5 of 26

match those held by local residents.<sup>4</sup> Some municipalities have even tied local hire and other workforce policies to local development permits to address transportation issues. Cervero and Duncan note that:

In nearly built-out Berkeley, CA, the approach to balancing jobs and housing is to create local jobs rather than to develop new housing. The city's First Source program encourages businesses to hire local residents, especially for entry- and intermediate-level jobs, and sponsors vocational training to ensure residents are employment-ready. While the program is voluntary, some 300 businesses have used it to date, placing more than 3,000 city residents in local jobs since it was launched in 1986. When needed, these carrots are matched by sticks, since the city is not shy about negotiating corporate participation in First Source as a condition of approval for development permits.

Recently, the State of California verified its commitment towards workforce development through the Affordable Housing and High Road Jobs Act of 2022, otherwise known as Assembly Bill No. 2011 ("AB2011"). AB2011 amended the Planning and Zoning Law to allow ministerial, by-right approval for projects being built alongside commercial corridors that meet affordability and labor requirements.

The City should consider utilizing local workforce policies and requirements to benefit the local area economically and to mitigate greenhouse gas, improve air quality, and reduce transportation impacts.

# II. THE CALIFORNIA ENVIRONMENTAL QUALITY ACT

CEQA is a California statute designed to inform decision-makers and the public about the potential significant environmental effects of a project. 14 California Code of Regulations ("CEQA Guidelines"), § 15002, subd. (a)(1).<sup>5</sup> At its core, its purpose is to "inform the public and its responsible officials of the environmental

<sup>&</sup>lt;sup>4</sup> Cervero, Robert and Duncan, Michael (2006) Which Reduces Vehicle Travel More: Jobs-Housing Balance or Retail-Housing Mixing? Journal of the American Planning Association 72 (4), 475-490, 482, *available at* <a href="http://reconnectingamerica.org/assets/Uploads/UTCT-825.pdf">http://reconnectingamerica.org/assets/Uploads/UTCT-825.pdf</a>.

The CEQA Guidelines, codified in Title 14 of the California Code of Regulations, section 15000 et seq., are regulatory guidelines promulgated by the state Natural Resources Agency for the implementation of CEQA. Pub. Res. Code, § 21083. The CEQA Guidelines are given "great weight in interpreting CEQA except when . . . clearly unauthorized or erroneous." Center for Biological Diversity v. Dept. of Fish & Wildlife (2015) 62 Cal.4th 204, 217.

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 6 of 26

consequences of their decisions *before* they are made. Thus, the EIR 'protects not only the environment but also informed self-government[.]" *Citizens of Goleta Valley v. Board of Supervisors* (1990) 52 Cal.3d 553, 564 (internal citation omitted).

CEQA directs public agencies to avoid or reduce environmental damage, when possible, by requiring alternatives or mitigation measures. CEQA Guidelines, § 15002, subds. (a)(2)-(3); see also Berkeley Keep Jets Over the Bay Committee v. Board of Port Commissioners of the City of Oakland (2001) 91 Cal.App.4th 1344, 1354; Laurel Heights Improvement Assn. v. Regents of University of California (1988) 47 Cal.3d 376, 400. The Environmental Impact Report (EIR) serves to provide public agencies and the public in general with information about the effect that a proposed project is likely to have on the environment and to "identify ways that environmental damage can be avoided or significantly reduced." CEQA Guidelines, § 15002, subd. (a)(2).

A public agency must prepare an EIR whenever substantial evidence supports a "fair argument" that a proposed project "may have a significant effect on the environment." Pub. Res. Code, §§ 21100, 21151; CEQA Guidelines, §§ 15002, subds. (f)(1)-(2), 15063; No Oil, supra, 13 Cal.App.3d at p. 75; Communities for a Better Environment v. California Resources Agency (2002) 103 Cal.App.4th 98, 111-112. If the project has a significant effect on the environment, the agency may approve the project only upon finding that it has "eliminated or substantially lessened all significant effects on the environment where feasible" and that any unavoidable significant effects on the environment are "acceptable due to overriding concerns" specified in Public Resources Code section 21081. See CEQA Guidelines, §§ 15092, subds. (b)(2)(A)-(B).

Essentially, should a lead agency be presented with a fair argument that a project may have a significant effect on the environment, the lead agency shall prepare an EIR even though it may also be presented with other substantial evidence that the project will not have a significant effect. CEQA Guidelines, §§ 15064(f)(1)-(2); see No Oil, supra, 13 Cal.App.3d at p. 75 (internal citations and quotations omitted). Substantial evidence includes "enough relevant information and reasonable inferences from this information that a fair argument can be made to support a conclusion, even though other conclusions might also be reached." CEQA Guidelines, § 15384, subd. (a).

The EIR has been described as "an environmental 'alarm bell' whose purpose it is to alert the public and its responsible officials to environmental changes before they have reached ecological points of no return." Berkeley Keep Jets Over the Bay v. Bd. of Port

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 7 of 26

Comm'rs. (2001) 91 Cal. App. 4th 1344, 1354 ("Berkeley Jets"); County of Inyo v. Yorty (1973) 32 Cal. App. 3d 795, 810.

The preparation and circulation of an EIR is more than a set of technical hurdles for agencies and developers to overcome. Communities for a Better Environment v. Richmond (2010) 184 Cal. App. 4th 70, 80 (quoting Vineyard Area Citizens for Responsible Growth, Inc. v. City of Rancho Cordova (2007) 40 Cal. 4th 412, 449-450). The EIR's function is to ensure that government officials who decide to build or approve a project do so with a full understanding of the environmental consequences and, equally important, that the public is assured those consequences have been considered. Id. For the EIR to serve these goals it must present information so that the foreseeable impacts of pursuing the project can be understood and weighed, and the public must be given an adequate opportunity to comment on that presentation before the decision to go forward is made. Id.

A strong presumption in favor of requiring preparation of an EIR is built into CEQA. This presumption is reflected in what is known as the "fair argument" standard under which an EIR must be prepared whenever substantial evidence in the record supports a fair argument that a project may have a significant effect on the environment. *Quail Botanical Gardens Found., Inc. v. City of Encinitas* (1994) 29 Cal.App.4th 1597, 1602; *Friends of "B" St. v. City of Hayward* (1980) 106 Cal.3d 988, 1002.

The fair argument test stems from the statutory mandate that an EIR be prepared for any project that "may have a significant effect on the environment." Pub. Res. Code, § 21151; see No Oil, Inc. v. City of Los Angeles (1974) 13 Cal.App.3d 68, 75 (hereafter, "No Oil"); accord Jensen v. City of Santa Rosa (2018) 23 Cal.App.5th 877, 884 (hereafter, "Jensen"). Under this test, if a proposed project is not exempt and may cause a significant effect on the environment, the lead agency must prepare an EIR. Pub. Res. Code, §§ 21100, subd. (a), 21151; CEQA Guidelines, §§ 15064, subds. (a)(1), (f)(1). An EIR may be dispensed with only if the lead agency finds no substantial evidence in the initial study or elsewhere in the record that the project may have a significant effect on the environment. Parker Shattuck Neighbors v. Berkeley City Council (2013) 222 Cal.App.4th 768, 785. In such a situation, the lead agency must adopt a negative declaration. Pub. Res. Code, § 21080, subd. (c)(1); CEQA Guidelines, §§ 15063, subd. (b)(2), 15064, subd. (f)(3).

"Significant effect upon the environment" is defined as "a substantial or potentially substantial adverse change in the environment." Pub. Res. Code, § 21068; CEQA

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 8 of 26

Guidelines, § 15382. A project may have a significant effect on the environment if there is a reasonable probability that it will result in a significant impact. No Oil, supra, 13 Cal. App.3d at p. 83 fn. 16; see Sundstrom v. County of Mendocino (1988) 202 Cal. App.3d 296, 309 (hereafter, "Sundstrom"). If any aspect of the project may result in a significant impact on the environment, an EIR must be prepared even if the overall effect of the project is beneficial. CEQA Guidelines, § 15063, subd. (b)(1); see County Sanitation Dist. No. 2 v. County of Kern (2005) 127 Cal. App.4th 1544, 1580.

This standard sets a "low threshold" for preparation of an EIR. Consolidated Irrigation Dist. v. City of Selma (2012) 204 Cal. App. 4th 187, 207; Nelson v. County of Kern (2010) 190 Cal. App. 4th 252; Pocket Protectors v. City of Sacramento (2004) 124 Cal. App. 4th 903, 928; Bowman v. City of Berkeley (2004) 122 Cal. App. 4th 572, 580; Citizen Action to Serve All Students v. Thornley (1990) 222 Cal. App. 3d 748, 754; Sundstrom, supra, 202 Cal. App. 3d at p. 310; No Oil, supra, 13 Cal. App. 3d at p. 84; County Sanitation, supra, 127 Cal. App. 4th at p. 1579. If substantial evidence in the record supports a fair argument that the project may have a significant environmental effect, the lead agency must prepare an EIR even if other substantial evidence before it indicates the project will have no significant effect. See Jensen, supra, 23 Cal. App. 5th at p. 886; Clews Land & Livestock v. City of San Diego (2017) 19 Cal. App. 5th 161, 183; Stanislaus Audubon Society, Inc. v. County of Stanislaus (1995) 33 Cal. App. 4th 144, 150; Brentwood Assn. for No Drilling, Inc. v. City of Los Angeles (1982) 134 Cal. App. 3d 491; Friends of 'B" St., 106 Cal. App.3d 988; CEQA Guidelines, § 15064, subd. (f)(1). It "requires the preparation of an EIR where there is substantial evidence that any aspect of the project, either individually or cumulatively, may cause a significant effect on the environment, regardless of whether the overall effect of the project is adverse or beneficial[.]" County Sanitation, supra, 127 Cal. App. 4th at p. 1580 (quoting CEQA Guidelines, § 15063, subd. (b)(1)).

Evidence supporting a fair argument of a significant environmental impact triggers preparation of an EIR regardless of whether the record contains contrary evidence. League for Protection of Oakland's Architectural and Historical Resources v. City of Oakland (1997) 52 Cal. App. 4th 896, 904-905. "Where the question is the sufficiency of the evidence to support a fair argument, deference to the agency's determination is not appropriate[.]" County Sanitation, supra, 127 Cal. App. 4th at p. 1579 (quoting Sierra Club v. County of Sonoma (1992) 6 Cal. App. 4th 1307, 1317-1318).

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 9 of 26

The agency or the court should not weigh expert testimony or decide on the credibility of such evidence—this is the EIR's responsibility. As stated in *Pocket Protectors v. City of Sacramento* (2004):

Unlike the situation where an EIR has been prepared, neither the lead agency nor a court may "weigh" conflicting substantial evidence to determine whether an EIR must be prepared in the first instance. Guidelines section 15064, subdivision (f)(1) provides in pertinent part: if a lead agency is presented with a fair argument that a project may have a significant effect on the environment, the lead agency shall prepare an EIR even though it may also be presented with other substantial evidence that the project will not have a significant effect. Thus, as *Claremont* itself recognized, [c]onsideration is not to be given contrary evidence supporting the preparation of a negative declaration.

124 Cal. App. 4th 903, 935 (internal citations and quotations omitted).

In cases where it is not clear whether there is substantial evidence of significant environmental impacts, CEQA mandates erring on the side of a "preference for resolving doubts in favor of environmental review." *Mejia v. City of Los Angeles* (2005) 130 Cal.App.4th 322, 332 "The foremost principle under CEQA is that the Legislature intended the act to be interpreted in such manner as to afford the fullest possible protection to the environment within the reasonable scope of the statutory language. *Friends of Mammoth v. Bd. of Supervisors* (1972) 8 Cal.3d 247, 259.

Further, it is the duty of the lead agency, not the public, to conduct the proper environmental studies. "The agency should not be allowed to hide behind its own failure to gather relevant data." *Sundstrom, supra,* 202 Cal.App.3d at p. 311. "Deficiencies in the record may actually enlarge the scope of fair argument by lending a logical plausibility to a wider range of inferences." *Ibid*; see also *Gentry v. City of Murrieta* (1995) 36 Cal.App.4th 1359, 1382 (lack of study enlarges the scope of the fair argument which may be made based on the limited facts in the record).

Thus, refusal to complete recommended studies lowers the already low threshold to establish a fair argument. The court may not exercise its independent judgment on the omitted material by determining whether the ultimate decision of the lead agency would have been affected had the law been followed. *Environmental Protection Information Center v. Cal. Dept. of Forestry* (2008) 44 Cal.4th 459, 486 (internal citations

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 10 of 26

and quotations omitted). The remedy for this deficiency would be for the trial court to issue a writ of mandate. *Ibid.* 

While the courts review an EIR using an 'abuse of discretion' standard, the reviewing court is not to uncritically rely on every study or analysis presented by a project proponent in support of its position. Berkeley Keep Jets, supra, 91 Cal.App.4th at p. 1355 (quoting Laurel Heights, supra, 47 Cal.3d at pp. 391, 409 fn. 12) (internal quotations omitted). A clearly inadequate or unsupported study is entitled to no judicial deference. Ibid. Drawing this line and determining whether the EIR complies with CEQA's information disclosure requirements presents a question of law subject to independent review by the courts. Sierra Club v. County of Fresno (2018) 6 Cal.5th 502, 515; Madera Oversight Coalition, Inc. v. County of Madera (2011) 199 Cal.App.4th 48, 102, 131. As the First District Court of Appeal has previously stated, prejudicial abuse of discretion occurs if the failure to include relevant information precludes informed decision-making and informed public participation, thereby thwarting the statutory goals of the EIR process. Berkeley Keep Jets, supra, 91 Cal.App.4th at p. 1355 (internal quotations omitted).

Both the review for failure to follow CEQA's procedures and the fair argument test are questions of law, thus, the de novo standard of review applies. *Vineyard Area Citizens for Responsible Growth v. City of Rancho Cordova* (2007) 40 Cal.4th 412, 435. Whether the agency's record contains substantial evidence that would support a fair argument that the project may have a significant effect on the environment is treated as a question of law. *Consolidated Irrigation Dist.*, *supra*, 204 Cal.App.4th at p. 207; Kostka and Zischke, Practice Under the Environmental Quality Act (2017, 2d ed.) at § 6.76.

### III. THE EIR IS INADEQUATE UNDER CEQA

# A. The FEIR Fails to Support Its Findings with Substantial Evidence

When new information is brought to light showing that an impact previously discussed in the DEIR but found to be insignificant with or without mitigation in the DEIR's analysis has the potential for a significant environmental impact supported by substantial evidence, the EIR must consider and resolve the conflict in the evidence. See *Visalia Retail, L.P. v. City of Visalia* (2018) 20 Cal. App. 5th 1, 13, 17; see also *Protect the Historic Amador Waterways v. Amador Water Agency* (2004) 116 Cal. App. 4th 1099, 1109. While a lead agency has discretion to formulate standards for determining significance and the need for mitigation measures—the choice of any standards or

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 11 of 26

thresholds of significance must be "based to the extent possible on scientific and factual data and an exercise of reasoned judgment based on substantial evidence. CEQA Guidelines § 15064(b); Cleveland Nat'l Forest Found. v. San Diego Ass'n of Gov'ts (2017) 3 Cal. App. 5th 497, 515; Mission Bay Alliance v. Office of Community Inv. & Infrastructure (2016) 6 Cal. App. 5th 160, 206. And when there is evidence that an impact could be significant, an EIR cannot adopt a contrary finding without providing an adequate explanation along with supporting evidence. East Sacramento Partnership for a Livable City v. City of Sacramento (2016) 5 Cal. App. 5th 281, 302.

In addition, a determination that regulatory compliance will be sufficient to prevent significant adverse impacts must be based on a project-specific analysis of potential impacts and the effect of regulatory compliance. In Californians for Alternatives to Toxics v. Department of Food & Agric. (2005) 136 Cal. App. 4th 1, the court set aside an EIR for a statewide crop disease control plan because it did not include an evaluation of the risks to the environment and human health from the proposed program but simply presumed that no adverse impacts would occur from use of pesticides in accordance with the registration and labeling program of the California Department of Pesticide Regulation. See also Ebbetts Pass Forest Watch v Department of Forestry & Fire Protection (2008) 43 Cal. App. 4th 936, 956 (the fact that the Department of Pesticide Regulation had assessed environmental effects of certain herbicides in general did not excuse failure to assess effects of their use for specific timber harvesting project).

Here, for the reasons discussed in detail below, the EIR fails to comply with the foregoing requirements.

1. The Project's Initial Study and the FEIR's Responses to Comments Omit Critical Supporting Information Regarding the Project's Energy Use Impacts, Fail to Adopt a Correct Threshold of Significance, Improperly Rely on the Project's Purported Regulatory Compliance, and Improperly Find that the Project's Energy Use Impacts Would Be Less Than Significant

Environmental documents must provide technical details, not merely conclusory findings, to support their determinations. [A]n EIR shall include summarized technical data, maps, plot plans, diagrams, and similar relevant information sufficient to permit full assessment of significant environmental impacts by reviewing agencies and

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 12 of 26

members of the public. CEQA Guidelines § 15147; San Franciscans for Reasonable Growth v. City & County of San Francisco (1987) 193 Cal.App.3d 1544. 1549 ("All technical data, however, need not be included in the body of report, but may be relegated to appendices [citation omitted] or may be contained in separate source documents which are not formally a part of the document."). An EIR shall cite all documents used in its preparation . . . "CEQA Guidelines § 15148. An environmental document may incorporate by reference another document so long as the document is made available for inspection to the public. CEQA Guidelines § 15150.

Here, the Project's Initial Study (Appendix A to DEIR) concluded that the Project's energy use impacts will be less than significant and therefore no mitigation is required. See Appendix A to DEIR, pp. 59-65. However, the City appeared to premise this determination regarding the threshold of significance on faulty analysis whereby it compares the Project's anticipated net increase in energy uses to the estimated energy uses of all of Alameda County. See Appendix A to DEIR at p. 59. Despite the City's arguments to the contrary in the FEIR's Response to Comments (FEIR, pp. 503-505), Local 713 submits that the City then applied this improper underlying assumption in making the determination that the proposed Project's anticipated energy uses will have no significant energy use impacts. *Id*.

In this regard, the EIR fails to provide substantial evidence to support comparison of the Project's energy use with the estimated energy use of the entirety of Alameda County. Thresholds of significance are "identifiable, quantitative, qualitative or performance level of a particular environmental effect." (CEQA Guidelines 15064.7.) While a lead agency has discretion to set thresholds of significance to determine whether an adverse environmental impact should be classified as "significant" or "less than significant", a lead agency's choice of an appropriate threshold must be based upon scientific and factual data to the extent possible and supported by substantial evidence Mission Bay Alliance v. Office of Community Inv. & Infrastructure (2016) 6 Cal.App.5th 160, 206; CEQA Guidelines § 15064.) When there is evidence that an impact may be significant, an EIR may not find the impact to be less than significant without an adequate explanation and supporting evidence. (East Sacramento Partnership for a Livable City v. City of Sacramento (2016) 5 Cal. App.5th 281, 300 – 02.) A threshold of significance may not be "impermissibly lenient." (Endangered Habitats League, Inc. v. County of Orange (2005) 131 Cal.App.5th 777, 791.)

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 13 of 26

In this case, the comparison of the Project's anticipated energy use impacts to the energy use of all of Alameda County (as an apparent threshold of significance) is unjustified and of no evidentiary value. Local 713 resubmits that the more pertinent, legally appropriate, and proportional analysis in assessing the Project's energy use impacts would be for the *EIR to consider the percentage increase in energy use that the Project presents compared to the current, existing energy uses within the Project site*. It is notable that City's responses to comments in the FEIR fail to address this reasonable proposal for shoring up the EIR's analysis of the Project's energy use impacts. Moreover, Local 713 reiterates that the EIR should analyze and present the Project's proportional contribution to the City's overall energy use, which it also fails to do.

The foregoing statistical calculations, and the City's demonstrated lack of analysis of them, amounts to <u>significant new information</u> associated with the Project's energy use impacts. This analysis must be performed for the City to properly assess the Project's anticipated energy use impacts and to thereby determine whether implementation of mitigation measures is warranted.

In the FEIR's Response to Comments, the City asserts that its determination of no significant energy use impacts was not based on the DEIR's comparison of the Project's anticipated energy use to Alameda County's energy use. (FEIR, pp. 503-505.) Rather, the City contends that its determination of no significant energy use impacts is based solely on the Project's compliance with applicable regulations and building planning guidance concerning building energy use and efficiency. (Id.) However, to meet CEQA requirements, a determination that regulatory compliance is sufficient to prevent significant adverse impacts must be based on a project-specific analysis of potential impacts and the effect of regulatory compliance. (See Californians for Alternatives to Toxics v. Department of Food & Agric. (2005) 136 Cal. App. 4th 1; Ebbetts Pass Forest Watch v Department of Forestry & Fire Protection (2008) 43 Cal. App. 4th 936, 956.) Here, the FEIR's bald assertion that the Project's compliance with state and local policies and regulations will categorically reduce energy use impacts below the threshold of significance, without supporting analysis, violates CEQA.

Ultimately, as set forth in *Sundstrom*, on this issue, the City "should not be allowed to hide behind its own failure to gather relevant data." 202 Cal.App.3d at p. 311. The City's wholesale reliance on purported regulatory compliance as its basis for finding no significant energy use impacts lacks legal justification, and is therefore arbitrary and

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 14 of 26

capricious. The inadequate study conducted by the City on this issue will be entitled to no judicial deference in any CEQA challenge brought against the Project's DEIR/FEIR. See *Laurel Heights, supra*, 47 Cal.3d at pp. 391, 409 fn. 12) (internal quotations omitted).

Based on the foregoing, and in spite of the conclusions set forth in the EIR, there is substantial evidence of the potential for the Project's energy use to present a significant environmental impact. As such, the EIR must, at a minimum, be revised and recirculated consider and resolve this conflict in the evidence. See *Visalia Retail, supra,* 20 Cal. App. 5th at 17; see also *Amador Waterways, supra,* (2004) 116 Cal. App. 4th at 1109.

Furthermore, and as discussed below in connection with the Project's Greenhouse Gas Emissions impacts, there are a litany of additional mitigation measures that could be incorporated in the Project in order to curb its GHG emissions impacts, many of which would also reduce the Project's Energy Use (and Air Quality) impacts as well. Incorporating the energy use mitigation measures proposed below is feasible and justified for the Project. The DEIR's failure to do so, in conjunction with its faulty energy use impact analysis, violates CEQA.

# 2. The FEIR Improperly Fails to Deploy All Feasible Mitigation Measures for the Project's Greenhouse Gas Emissions Impacts

Similar to the deficiencies identified above regarding the EIR's faulty analysis of the Project's projected energy use, the EIR fails to properly analyze and mitigate the impacts associated with the Project's projected greenhouse gas ("GHG") emissions. Indeed, despite concluding that the Project will lead to significant and unavoidable GHG impacts in operation, the EIR still does not supply any estimated calculations of the GHG emissions that the Project will produce, either in the construction phase or the operation phase. Further, based on the appendices to the EIR, no GHG impact technical study for the Project has been conducted. Thus, the EIR provides no demonstrable analysis of the threshold of significance applicable to the Project's increase in GHG emissions. Rather, the EIR arbitrarily and summarily concludes that the Project's GHG impacts in its operation are significant and unavoidable (and less than significant in the construction phase). After initially claiming in the DEIR that no GHG mitigation measures were feasible, in response to comments submitted concerning the Project, the City has added a single GHG mitigation measure (GHG-1)

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 15 of 26

apparently aimed at curbing the amount of natural gas to be consumed/combusted during the course of the Project's operation. (FEIR, pp. 41-42.)

As stated in the Office of Planning Research's ("**OPR**") technical advisory in 2018:

VMT and Greenhouse Gas Emissions Reduction. Senate Bill 32 (Pavley, 2016) requires California to reduce greenhouse gas (GHG) emissions 40 percent below 1990 levels by 2030, and Executive Order B-16-12 provides a target of 80 percent below 1990 emissions levels for the transportation sector by 2050.

Despite the Project's clear GHG emissions impact in direct contravention of SB 32's GHG reduction goals, the EIR draws the conclusion that the Project's GHG impacts are significant and cannot be further mitigated because of the 9th Circuit's recent decision in California Restaurant Association v. City of Berkeley. However, other than the recent addition of mitigation measures GHG-1, the EIR makes no effort to otherwise reduce the Project's GHG impacts through other specific project design features aimed at reducing GHG emissions. In this regard, the EIR mistakes a federal court ruling concerning federal preemption of natural gas supply regulations as grounds to excuse the City from the CEQA requirement of endeavoring to ensure that the Project's otherwise significant and unavoidable GHG emissions impacts are reduced to the maximum extent feasible. To that end, the City inexplicably argues in its responses to comments that, because other proposed GHG mitigation measures would not reduce the amount of natural gas consumed by the project, those other mitigation measures are not worthy of implementation to reduce the Project's otherwise significant and unavoidable GHG emissions impacts. (FEIR, pp. 38-44.) The City's FEIR even contends, without evidentiary or legal support, that any effort to offset the Project's GHG emissions impacts (through on-site or offsite measures) would not be appropriate or feasible in reducing the Project's significant and unavoidable GHG impacts. (FEIR, pp. 45-46.) The City's determinations in this regard are contrary to and violate CEQA, which does not constrain the scope of mitigation measures that may be implemented in order to reduce a project's individual and cumulative environmental impacts, and particularly those associated with significant and unavoidable GHG emissions.

Additionally, the Project remains inconsistent with the CARB 2022 Scoping Plan. Indeed, the first action item in the Scoping Plan is reduce GHG emissions "40%

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 16 of 26

below 1990 levels by 2030." The CARB Scoping Plan also sets forth the action item that new residential and commercial buildings will have "[a]ll electric appliances beginning 2026 (residential) and 2029 (commercial), contributing to 6 million heat pumps installed statewide by 2030."

Despite the clear path presented by the CARB Scoping Plan for reducing GHG emissions, the EIR declines to hold the Project to that standard, and instead deflects its responsibility to identify and mitigate GHG emissions impacts pursuant to CEQA's mandate.

It is the City's obligation, as lead agency, to ensure that the Project's environmental impacts have first been properly analyzed and then mitigated to a less than significant level wherever possible. Local 713 resubmits that the Project's implementation of the additional potential mitigation measures set forth below (where applicable), as delineated by the California Air Pollution Control Officers Association's *Quantifying Greenhouse Gas Mitigation Measures*, would contribute toward the goal of reducing the Project's significant and unavoidable GHG emission impacts to the maximum extent possible:

|                     |                   | E                                                                                                                                                | nergy |                   |                                                                                                                                              |                                 |
|---------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Category            | Measure<br>Number | Strategy                                                                                                                                         | ВМР   | Grouped<br>With # | Range of Effec                                                                                                                               | tiveness                        |
|                     |                   |                                                                                                                                                  |       |                   | Percent Reduction<br>in GHG Emissions                                                                                                        | Basis                           |
| Use                 | BE-1              | Buildings exceed Title 24 Building Envelope Energy Efficiency Standards by X% (X is equal to the percentage improvement selected for the project |       |                   | For a 10% improvement ov<br>Non-Residential electricity e<br>natural gas use: 0.7-10%<br>Residential electricity use: 0<br>gas use: 7.5-9.1% | ise: 0.2-5.5%;                  |
| ergy                | BE-2              | Install Programmable<br>Thermostat Timers                                                                                                        | х     |                   | ВМР                                                                                                                                          |                                 |
| Building Energy Use | BE-3              | Obtain Third-party HVAC<br>Commissioning and<br>Verification of Energy<br>Savings                                                                | х     | BE-1              | ВМР                                                                                                                                          |                                 |
| Bui                 | BE-4              | Install Energy Efficient<br>Appliances                                                                                                           |       |                   | Residential building: 2-4%<br>Grocery Stores: 17-22%                                                                                         | Appliance<br>Electricity<br>Use |
|                     | BE-5              | Install Energy Efficient Boilers                                                                                                                 |       |                   | 1.2-18.4%                                                                                                                                    | Fuel Use                        |

<sup>&</sup>lt;sup>6</sup> California Air Resources Board 2022 Scoping Plan at p. 72; <u>https://ww2.arb.ca.gov/sites/default/files/2023-04/2022-sp.pdf</u>

<sup>7</sup> Id. at p. 75

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 17 of 26

|                                  | AE-1 | Establish Onsite Renewable<br>Energy Systems-Generic            |   | 0-100% |                                           |
|----------------------------------|------|-----------------------------------------------------------------|---|--------|-------------------------------------------|
| Alternative Energy<br>Generation | AE-2 | Establish Onsite Renewable<br>Energy Systems-Solar Power        |   | 0-100% |                                           |
|                                  | AE-3 | Establish Onsite Renewable<br>Energy Systems-Wind Power         |   | 0-100% |                                           |
| nativ                            | AE-4 | Utilize a Combined Heat and<br>Power System                     |   | 0-46%  |                                           |
| Alter                            | AE-5 | Establish Methane Recovery in Landfills                         |   | 73-77% |                                           |
|                                  | AE-6 | Establish Methane Recovery<br>in Wastewater Treatment<br>Plants |   | 95-97% |                                           |
| Lighting                         | LE-1 | Install Higher Efficacy Public<br>Street and Area Lighting      |   | 16-40% | Outdoor<br>Lighting<br>Electricity<br>Use |
|                                  | LE-2 | Limit Outdoor Lighting<br>Requirements                          | х | ВМР    |                                           |
|                                  | LE-3 | Replace Traffic Lights with<br>LED Traffic Lights               |   | 90%    | Traffic Light<br>Electricity<br>Use       |

| Transportation |                   |                                                                         |     |                   |                                    |       |  |  |  |
|----------------|-------------------|-------------------------------------------------------------------------|-----|-------------------|------------------------------------|-------|--|--|--|
| Category       | Measure<br>Number | Strategy                                                                | ВМР | Grouped<br>With # | Range of Effectiver                | ness  |  |  |  |
|                |                   |                                                                         |     |                   | Percent Reduction in GHG Emissions | Basis |  |  |  |
|                | LUT-1             | Increase Density                                                        |     |                   | 1.5-30.0%                          | VMT   |  |  |  |
|                | LUT-2             | Increase Location Efficiency                                            |     |                   | 10-65%                             | VMT   |  |  |  |
| tion           | LUT-3             | Increase Diversity of Urban and<br>Suburban Developments (Mixed<br>Use) |     |                   | 9-30%                              | VMT   |  |  |  |
| oca            | LUT-4             | Incr. Destination Accessibility                                         |     |                   | 6.7-20%                            | VMT   |  |  |  |
| 1/4            | LUT-5             | Increase Transit Accessibility                                          |     |                   | 0.5-24.6%                          | VMT   |  |  |  |
| Land           | LUT-6             | Integrate Affordable and Below<br>Market Rate Housing                   |     |                   | 0.04-1.20%                         | VMT   |  |  |  |
|                | LUT-7             | Orient Project Toward Non-Auto<br>Corridor                              |     |                   | NA                                 |       |  |  |  |
|                | LUT-8             | Locate Project near Bike<br>Path/Bike Lane                              |     |                   | NA                                 |       |  |  |  |
|                | LUT-9             | Improve Design of Development                                           |     |                   | 3.0-21.3%                          | VMT   |  |  |  |

|                             | SDT-1  | Provide Pedestrian Network<br>Improvements                                  |                 | 0-2%       | VMT            |
|-----------------------------|--------|-----------------------------------------------------------------------------|-----------------|------------|----------------|
| 등                           | SDT-2  | Traffic Calming Measures                                                    |                 | 0.25-1.00% | VMT            |
| Desi                        | SDT-3  | Implement a Neighborhood<br>Electric Vehicle (NEV) Network                  |                 | 0.5-12.7%  | VMT            |
| Site                        | SDT-4  | Urban Non-Motorized Zones                                                   | SDT-1           | NA         |                |
| Neighborhood / Site Design  | SDT-5  | Incorporate Bike Lane Street<br>Design (on-site)                            | LUT-9           | NA         |                |
| borho                       | SDT-6  | Provide Bike Parking in Non-<br>Residential Projects                        | LUT-9           | NA         |                |
| Veigh                       | SDT-7  | Provide Bike Parking in Multi-<br>Unit Residential Projects                 | LUT-9           | NA         |                |
|                             | SDT-8  | Provide EV Parking                                                          | SDT-3           | NA         |                |
|                             | SDT-9  | Dedicate Land for Bike Trails                                               | LUT-9           | NA         |                |
|                             | PDT-1  | Limit Parking Supply                                                        |                 | 5-12.5     | %              |
| Parking<br>Policy / Pricing | PDT-2  | Unbundle Parking Costs from<br>Property Cost                                |                 | 2.6-13     | %              |
| Parking<br>icy / Prici      | PDT-3  | Implement Market Price<br>Public Parking (On-Street)                        |                 | 2.8-5.5    | %              |
| Pol                         | PDT-4  | Require Residential Area<br>Parking Permits                                 | PDT-1,<br>2 & 3 |            |                |
|                             | TRT-1  | Implement Voluntary CTR<br>Programs                                         |                 | 1.0-6.2%   | Commute<br>VMT |
|                             | TRT-2  | Implement Mandatory<br>CTR Programs – Required<br>Implementation/Monitoring |                 | 4.2-21.0%  | Commute<br>VMT |
|                             | TRT-3  | Provide Ride-Sharing<br>Programs                                            |                 | 1-15%      | Commute<br>VMT |
|                             | TRT-4  | Implement Subsidized or<br>Discounted Transit Prog.                         |                 | 0.3-20.0%  | Commute<br>VMT |
|                             | TRT-5  | Provide End of Trip<br>Facilities                                           | TRT-1, 2<br>& 3 | NA         |                |
| Trip Reduction Programs     | TRT-6  | Telecommuting and<br>Alternative Work<br>Schedules                          |                 | 0.07-5.50% | Commute<br>VMT |
| ction P                     | TRT-7  | Implement Commute Trip<br>Reduction Marketing                               |                 | 0.8-4.0%   | Commute<br>VMT |
| Reduc                       | TRT-8  | Implement Preferential<br>Parking Permit Program                            | TRT-1, 2<br>& 3 | NA         |                |
| Trip                        | TRT-9  | Implement Car-Sharing<br>Program                                            |                 | 0.4-0.7%   | VMT            |
|                             | TRT-10 | Implement School Pool<br>Program                                            |                 | 7.2-15.8%  | School<br>VMT  |

|                             | TRT-11 | Provide Employer-Sponsored<br>Vanpool/Shuttle                                             |                                           | 0.3-13.4% | Commute<br>VMT       |
|-----------------------------|--------|-------------------------------------------------------------------------------------------|-------------------------------------------|-----------|----------------------|
|                             | TRT-12 | Implement Bike-Sharing<br>Program                                                         | SDT-5,<br>LUT-9                           |           | NA                   |
|                             | TRT-13 | Implement School Bus<br>Program                                                           |                                           | 38-63%    | School<br>VMT        |
|                             | TRT-14 | Price Workplace Parking                                                                   |                                           | 0.1-19.7% | Commute<br>VMT       |
|                             | TRT-15 | Implement Employee Parking<br>"Cash-Out"                                                  |                                           | 0.6-7.7%  | Commute<br>VMT       |
| ents                        | TST-1  | Provide a Bus Rapid Transit<br>System                                                     |                                           | 0.02-3.2% | VMT                  |
| Transit System Improvements | TST-2  | Implement Transit Access<br>Improvements                                                  | TST-3,<br>TST-4                           | NA        |                      |
| mpr                         | TST-3  | Expand Transit Network                                                                    |                                           | 0.1-8.2%  | VMT                  |
| tem I                       | TST-4  | Increase Transit Service<br>Frequency/Speed                                               |                                           | 0.02-2.5% | VMT                  |
| sit Sys                     | TST-5  | Provide Bike Parking Near<br>Transit                                                      | TST-3,<br>TST-4                           | NA        |                      |
| Tran                        | TST-6  | Provide Local Shuttles                                                                    | TST-3,<br>TST-4                           | NA        |                      |
|                             | RPT-1  | Implement Area or Cordon<br>Pricing                                                       |                                           | 7.9-22.0% | VMT                  |
| 3/<br>H                     | RPT-2  | Improve Traffic Flow                                                                      |                                           | 0-45%     | VMT                  |
| Road Pricing                | RPT-3  | Require Project Contributions<br>to Transportation Infrastructure<br>Improvement Projects | RPT-2,<br>TST-1 to 6                      | NA        |                      |
| Road                        | RPT-4  | Install Park-and-Ride Lots                                                                | RPT-1,<br>TRT-11,<br>TRT-3,<br>TST-1 to 6 | NA        |                      |
| es                          | VT-1   | Electrify Loading Docks and/or<br>Require Idling-Reduction<br>Systems                     |                                           | 26-71%    | Truck<br>Idling Time |
| Vehicles                    | VT-2   | Utilize Alternative Fueled<br>Vehicles                                                    |                                           | Varie     | s                    |
|                             | VT-3   | Utilize Electric or Hybrid<br>Vehicles                                                    |                                           | 0.4-20.3% | Fuel Use             |

|              |         |                                                               | Wate  | er                |                                                                                    |                                    |
|--------------|---------|---------------------------------------------------------------|-------|-------------------|------------------------------------------------------------------------------------|------------------------------------|
| Category     | Measure | Strategy                                                      | ВМР   | Grouped<br>With # | Range of Effec                                                                     | ctiveness                          |
| Category     | Number  |                                                               | DIVIE |                   | Percent Reduction<br>in GHG Emissions                                              | Basis                              |
| ply          | WSW-1   | Use Reclaimed Water                                           |       |                   | up to 40% for Northern<br>Californiaup to 81% for<br>Southern California           | Outdoor<br>Water Use               |
| Sup          | WSW-2   | Use Gray Water                                                |       |                   | 0-100%                                                                             | Outdoor<br>Water Use               |
| Water Supply | WSW-3   | Use Locally-Sourced Water<br>Supply                           |       |                   | 0-60% for Northern and<br>Central California;<br>11-75% for Southern<br>California | Indoor and<br>Outdoor<br>Water Use |
|              | WUW-1   | Install Low-Flow Water Fixtures.                              |       |                   | Residential: 20%<br>Non-Residential: 17-<br>31%                                    | Indoor Water<br>Use                |
|              | WUW-2   | Adopt a Water Conservation<br>Strategy.                       |       |                   | varies                                                                             |                                    |
| r Usa        | WUW-3   | Design Water-Efficient<br>Landscapes                          |       |                   | 0-70%                                                                              | Outdoor<br>Water Use               |
| Water Use    | WUW-4   | Use Water-Efficient<br>Landscape Irrigation Systems           |       |                   | 6.1%                                                                               | Outdoor<br>Water Use               |
|              | WUW-5   | Reduce Turf in Landscapes<br>and Lawns                        |       |                   | varies                                                                             |                                    |
|              | WUW-6   | Plant Native or Drought-<br>Resistant Trees and<br>Vegetation |       |                   | ВМР                                                                                |                                    |

| Area Landscaping |                   |                                              |     |                   |                                                                                                 |          |  |  |
|------------------|-------------------|----------------------------------------------|-----|-------------------|-------------------------------------------------------------------------------------------------|----------|--|--|
| Category         | Measure<br>Number | Strategy                                     | ВМР | Grouped<br>With # | Range of Effectiveness                                                                          |          |  |  |
|                  |                   |                                              |     |                   | Percent Reduction in GHG Emissions                                                              | Basis    |  |  |
| Area Landscaping | A-1               | Prohibit Gas Powered<br>Landscape Equipment. |     |                   | LADWP: 2.5-46.5%<br>PG&E: 64.1-80.3%<br>SCE: 49.5-72.0%<br>SDGE: 38.5-66.3%<br>SMUD: 56.3-76.0% | Fuel Use |  |  |
| Lan              | A-2               | Implement Lawnmower<br>Exchange Program      |     |                   | ВМР                                                                                             |          |  |  |
| Area             | A-3               | Electric Yard Equipment<br>Compatibility     |     | A-1 or<br>A-2     | ВМР                                                                                             |          |  |  |

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 21 of 26

| Solid Waste |                   |                                                          |     |                   |                                    |       |  |  |
|-------------|-------------------|----------------------------------------------------------|-----|-------------------|------------------------------------|-------|--|--|
| Category    | Measure<br>Number | Strategy                                                 | ВМР | Grouped<br>With # | Range of Effectiveness             |       |  |  |
|             |                   | Strategy                                                 |     |                   | Percent Reduction in GHG Emissions | Basis |  |  |
| lid<br>ste  | SW-1              | Institute or Extend Recycling<br>and Composting Services |     |                   | ВМР                                |       |  |  |
| Solid       | SW-2              | Recycle Demolished<br>Construction Material              |     |                   | ВМР                                |       |  |  |

| Vegetation |                          |                                  |         |                   |                                    |       |  |  |
|------------|--------------------------|----------------------------------|---------|-------------------|------------------------------------|-------|--|--|
| Category   | Measure<br>Number Strate |                                  |         | Grouped<br>With # | Range of Effectiveness             |       |  |  |
|            |                          | Strategy                         | egy BMP |                   | Percent Reduction in GHG Emissions | Basis |  |  |
| tion       | V-1                      | Urban Tree Planting              |         | GP-4              | varies                             |       |  |  |
| Vegetation | V-2                      | Create new vegetated open space. |         |                   | varies                             |       |  |  |

|              | Construction               |                                                                          |     |                   |                                       |          |  |  |  |  |
|--------------|----------------------------|--------------------------------------------------------------------------|-----|-------------------|---------------------------------------|----------|--|--|--|--|
| Category     | Measure<br>Number Strategy | Stratogy                                                                 | ВМР | Grouped<br>With # | Range of Effective                    | ness     |  |  |  |  |
| Calegory     |                            | Sualegy                                                                  |     |                   | Percent Reduction<br>in GHG Emissions | Basis    |  |  |  |  |
|              | C-1                        | Use Alternative Fuels for<br>Construction Equipment                      |     |                   | 0-22%                                 | Fuel Use |  |  |  |  |
| LC           | C-2                        | Use Electric and Hybrid<br>Construction Equipment                        |     |                   | 2.5-80%                               | Fuel Use |  |  |  |  |
| Construction | C-3                        | Limit Construction Equipment<br>Idling beyond Regulation<br>Requirements |     |                   | varies                                |          |  |  |  |  |
| රි           | C-4                        | Institute a Heavy-Duty Off-<br>Road Vehicle Plan                         |     | Any C             | ВМР                                   |          |  |  |  |  |
|              | C-5                        | Implement a Vehicle Inventory<br>Tracking System                         |     | Any C             | ВМР                                   |          |  |  |  |  |

| Miscellaneous |         |                                                                              |     |                   |                                    |        |  |  |
|---------------|---------|------------------------------------------------------------------------------|-----|-------------------|------------------------------------|--------|--|--|
| Category      | Measure | Strategy                                                                     | ВМР | Grouped<br>With # | Range of Effecti                   | veness |  |  |
|               | Number  |                                                                              |     |                   | Percent Reduction in GHG Emissions | Basis  |  |  |
|               | Misc-1  | Establish a Carbon<br>Sequestration Project                                  |     |                   | varies                             |        |  |  |
| v.            | Misc-2  | Establish Off-Site Mitigation                                                |     |                   | varies                             |        |  |  |
| neon          | Misc-3  | Use Local and Sustainable<br>Building Materials                              | х   |                   | ВМР                                |        |  |  |
| Miscellaneous | Misc-4  | Require Best Management<br>Practices in Agriculture and<br>Animal Operations | х   |                   | ВМР                                |        |  |  |
|               | Misc-5  | Require Environmentally<br>Responsible Purchasing                            | х   |                   | ВМР                                |        |  |  |
|               | Misc-6  | Implement an Innovative<br>Strategy for GHG Mitigation                       | х   |                   | BMP                                |        |  |  |

| General Plan Strategies |                   |                                                               |     |                   |                                       |       |  |  |  |
|-------------------------|-------------------|---------------------------------------------------------------|-----|-------------------|---------------------------------------|-------|--|--|--|
| Category                | Measure<br>Number | Strategy                                                      | ВМР | Grouped<br>With # | Range of Effectiveness                |       |  |  |  |
|                         |                   |                                                               |     |                   | Percent Reduction<br>in GHG Emissions | Basis |  |  |  |
|                         | GP-1              | Fund Incentives for Energy<br>Efficiency                      | х   |                   | BMP                                   |       |  |  |  |
| lans                    | GP-2              | Establish a Local Farmer's<br>Market                          | х   |                   | ВМР                                   |       |  |  |  |
| al P                    | GP-3              | Establish Community Gardens                                   | х   |                   | BMP                                   |       |  |  |  |
| General Plans           | GP-4              | Plant Urban Shade Trees                                       | х   | V-1               | ВМР                                   |       |  |  |  |
|                         | GP-5              | Implement Strategies to<br>Reduce Urban Heat-Island<br>Effect | х   |                   | ВМР                                   |       |  |  |  |

(See *Quantifying Greenhouse Gas Mitigation Measures*, Tables 6-1 to 6-9, California Air Pollution Control Officers Association (CAPCOA), August 2010.8)

Again, it is entirely feasible for the EIR to incorporate a substantial proportion of the foregoing measures for the Project as mandatory forms of mitigation against the

 $<sup>^8</sup>$  Available at:  $\frac{\text{http://www.aqmd.gov/docs/default-source/ceqa/handbook/capcoa-quantifying-greenhouse-gas-mitigation-measures.pdf}$ 

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 23 of 26

Project's potentially significant greenhouse gas impacts (as well as energy use and air quality impacts). The EIR cannot permissibly deflect its obligations to mitigate such impacts merely by hiding behind the 9th Circuit's ruling in *California Restaurant Association v. City of Berkeley*. More is required, and as currently constituted, the EIR's improper analysis and lack of appropriate mitigation on GHG impacts violates CEQA.

### 3. The FEIR's Biological Resources Mitigation Measure Remains Insufficient.

The Project's Initial Study and DEIR notes that up to 5 city street trees may require removal at the north edge of the Project site at the terminus of Hester Street. (Appendix A to DEIR, Initial Study, p. 51.) In order to mitigate the Project's potentially significant impacts to nesting birds in said street trees, the Initial Study imposes mitigation measure BIO-1, which requires, among other things, that preconstruction nesting surveys be conducted during the nesting season. *Id.* at p. 52. However, the mitigation measure defines the nesting period as February-September, contrary various findings by the California Department of Fish and Wildlife ("CDFW") concerning bird nesting season.<sup>9</sup>

Further investigation of the information contained on the CDFW's "California Outdoors Q&A" webpage reveals that the boundaries of bird nesting season in California are broad and variable: "[N]esting season can vary based on location and species of bird, and in some parts of the state, birds nest year-round." 10

This added qualification by CDFW regarding bird nesting season is consistent with, and underscores, CDFW's separate finding that raptor nesting in the Project's geographic region can and does occur outside the more general bird nesting period of February-September sought by the DEIR in BIO-1. Moreover, CDFW's collective findings on this issue confirm the inadequacy of the City's proposed mitigation measure for the Project.

<sup>10</sup> See CDFW California Outdoors Q&A – Nesting Birds <a href="https://wildlife.ca.gov/COQA/ArticlePage/2/tag/conflict#gsc.tab=0">https://wildlife.ca.gov/COQA/ArticlePage/2/tag/conflict#gsc.tab=0</a>

<sup>9 &</sup>quot;...[S]ome species of raptors (e.g. owls, hawks, etc.) may commence nesting activities in January." See CDFW November 18, 2021 letter to City of Adelanto, available at <a href="https://files.ceqanet.opr.ca.gov/273819-1/attachment/">https://files.ceqanet.opr.ca.gov/273819-1/attachment/</a> zo76RgD7dUdj5BLJTEhEMdf74g6f100RrKiWBQSquhFFe5l0X53rLsbLSGMPRXgXM4 AaYnJSTfZB6JpY0

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 24 of 26

In the FEIR's responses to comments, the City indicates that the street trees subject to potential impacts by the Project are not suitable candidates for raptor nesting, and that therefore, no further mitigation efforts (and/or modifications to the Project's existing biological mitigation measures set forth in the DEIR) are required. (FEIR, p. 508.) However, the City has failed to provide any evidence whatsoever to support its assertions regarding the suitability of the impacted trees for raptor nesting, let alone substantial evidence. Indeed, the City cites no authority or studies whatsoever that are supportive of the position that raptors would be highly unlikely to nest in the 30-40 foot tall street trees currently located on the Project Site.

The FEIR's responses to comments also fail to address Local 713's comments regarding the broad and variable nature of bird nesting season in California, as noted by CDFW, and the propensity for some birds in some locales to nest year-round. This failure to address this issue, in the form of added analysis and revised mitigation efforts, perpetuates the EIR's deficiencies on this issue.

Accordingly, Local 713 resubmits that the nesting period and survey plan set forth in the MM-BIO-1 must, at a minimum, be revised to account for CDFW's findings pertaining to the variable and/or year-round bird nesting season within the Project's geographic region, and that the FEIR must provide the requisite support for its conclusions regarding raptor nesting being improbable in the impacted street trees. Absent such revision, the proposed mitigation measure and, by extension, the EIR will remain in direct violation of the CEQA Guidelines.

### 4. The FEIR's Noise/Vibration Mitigation Measures Remain Inadequate and Fail to Incorporate Requisite Analysis

The Project's DEIR finds that construction of the Project will result in a potentially significant impact with respect to groundborne vibration. Specifically, the DEIR indicates that the Project's construction would generate groundborne vibration that would exceed thresholds of structural damage at nearby existing buildings. (DEIR at p. 4.3-18.) In an effort to address these potential significant impacts, the DEIR implements Mitigation Measure NOI-2, which states as follows:

**Static Roller Requirement.** The project applicant and/or its construction contractors shall use of [sii] a static roller in lieu of a vibratory roller for paving activities within 15 feet of the existing off-site buildings to the north and west of the project site. City staff shall verify

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 25 of 26

that this requirement is incorporated into construction plans prior to issuance of a building permit and verified in the field.

DEIR at p. 4.3-20.

However, Local 713 resubmits that the calculations associated with MM-NOI-2 do not include any analysis of the impacts of vibratory roller use between 10 feet and 25 feet of distance from existing off-site buildings. (See Appendix F to DEIR at pp. 3-5, Table 1.) Meanwhile, MM-NOI-2 only requires use of a static (non-vibratory) roller within 15 feet of neighboring sensitive receptors. Thus, the EIR's analysis with regard to MM-NOI-2 remains inadequate to support the measure, in that the DEIR does not clearly indicate that the vibration caused by use a vibratory roller starting at 15 feet of distance from neighboring structures would be less than the prescribed threshold of 0.5 in/sec PPV for vibration-induced structural damage. Moreover, the DEIR also does not otherwise provide a clear delineation for the minimum safe distance for use of a vibratory roller in the context of proximity to off-site structures.

The City's responses to comments in the FEIR on this issue do not address Local 713's concern. (See FEIR, pp. 508-509.) In that regard, the FEIR focuses on the fact that a static, non-vibratory roller used at a distance of 15 from nearby structures will not exceed the threshold for structural damage at those structures. (Id.) While that may ultimately be true, Local 713's concern on this issue is that the DEIR and MM-NOI-2 would permit the Project's use of vibratory rollers at distances of greater than 15 feet from neighboring structures, and the DEIR's analysis does not adequately confirm that the use of a vibratory roller at a distance of 16-25 feet from neighboring structures does not present a significant risk of structural damage (i.e., significant vibration impact). Based on the current requirements of MM-NOI-2, the EIR must still conduct further analysis of the potential vibration that would result from the use of a vibratory roller between the distances of 15 feet and 25 feet from neighboring structures, and assess whether the use of a vibratory roller at that range of distances would exceed the vibration-induced structural damage threshold of 0.5 in/sec. To the extent that Project is likely to exceed the vibration-induced structural damage threshold at those distances, further mitigation measures will be required for the Project to comply with CEQA.

Accordingly, further analysis is required to demonstrate that no significant impact will occur to neighboring industrial structures via use of vibratory roller starting at 15 feet distance away and greater. The EIR must be revised and recirculated to reflect this

City of San Leandro, 880 Doolittle Drive Project February 6, 2025 Page 26 of 26

appropriate analysis, and MM-NOI-2 should be adjusted accordingly, if necessary, in order to protect neighboring structures from damage.

### IV. CONCLUSION

Based on the foregoing concerns, the City cannot permissibly certify the EIR for the Project in its current form, and, at a minimum must revise and recirculate the EIR for the Project pursuant to CEQA. Absent doing so, the EIR in its current form directly violates CEQA in multiple respects. If the City should have any questions or concerns, please do not hesitate to contact this office.

Sincerely,

Jeremy Herwitt

Attorneys for Carpenters Local Union #713

### Attached:

March 8, 2021 SWAPE Letter to Mitchell M. Tsai re Local Hire Requirements and Considerations for Greenhouse Gas Modeling (Exhibit A);

Air Quality and GHG Expert Paul Rosenfeld CV (Exhibit B);

Air Quality and GHG Expert Matt Hagemann CV (Exhibit C)



2656 29<sup>th</sup> Street, Suite 201 Santa Monica, CA 90405

Matt Hagemann, P.G, C.Hg. (949) 887-9013 mhagemann@swape.com

Paul E. Rosenfeld, PhD (310) 795-2335 prosenfeld@swape.com

March 8, 2021

Mitchell M. Tsai 155 South El Molino, Suite 104 Pasadena, CA 91101

Subject:

Local Hire Requirements and Considerations for Greenhouse Gas Modeling

Dear Mr. Tsai,

Soil Water Air Protection Enterprise ("SWAPE") is pleased to provide the following draft technical report explaining the significance of worker trips required for construction of land use development projects with respect to the estimation of greenhouse gas ("GHG") emissions. The report will also discuss the potential for local hire requirements to reduce the length of worker trips, and consequently, reduced or mitigate the potential GHG impacts.

### Worker Trips and Greenhouse Gas Calculations

The California Emissions Estimator Model ("CalEEMod") is a "statewide land use emissions computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify potential criteria pollutant and greenhouse gas (GHG) emissions associated with both construction and operations from a variety of land use projects." CalEEMod quantifies construction-related emissions associated with land use projects resulting from off-road construction equipment; on-road mobile equipment associated with workers, vendors, and hauling; fugitive dust associated with grading, demolition, truck loading, and on-road vehicles traveling along paved and unpaved roads; and architectural coating activities; and paving.<sup>2</sup>

The number, length, and vehicle class of worker trips are utilized by CalEEMod to calculate emissions associated with the on-road vehicle trips required to transport workers to and from the Project site during construction.<sup>3</sup>

<sup>&</sup>lt;sup>1</sup> "California Emissions Estimator Model." CAPCOA, 2017, available at: http://www.aqmd.gov/caleemod/home.

<sup>&</sup>lt;sup>2</sup> "California Emissions Estimator Model." CAPCOA, 2017, available at: http://www.aqmd.gov/caleemod/home.

<sup>&</sup>lt;sup>3</sup> "CalEEMod User's Guide." CAPCOA, November 2017, available at: <a href="http://www.aqmd.gov/docs/default-source/caleemod/01">http://www.aqmd.gov/docs/default-source/caleemod/01</a> user-39-s-guide2016-3-2 15november2017.pdf?sfvrsn=4, p. 34.

Specifically, the number and length of vehicle trips is utilized to estimate the vehicle miles travelled ("VMT") associated with construction. Then, utilizing vehicle-class specific EMFAC 2014 emission factors, CalEEMod calculates the vehicle exhaust, evaporative, and dust emissions resulting from construction-related VMT, including personal vehicles for worker commuting.<sup>4</sup>

Specifically, in order to calculate VMT, CalEEMod multiplies the average daily trip rate by the average overall trip length (see excerpt below):

"VMT<sub>d</sub> =  $\Sigma$ (Average Daily Trip Rate  $_i$  \* Average Overall Trip Length  $_i$ )  $_n$ 

Where:

n = Number of land uses being modeled."5

Furthermore, to calculate the on-road emissions associated with worker trips, CalEEMod utilizes the following equation (see excerpt below):

"Emissionspollutant = VMT \* EFrunning, pollutant

Where:

Emissions<sub>pollutant</sub> = emissions from vehicle running for each pollutant

VMT = vehicle miles traveled

EF<sub>running,pollutant</sub> = emission factor for running emissions."6

Thus, there is a direct relationship between trip length and VMT, as well as a direct relationship between VMT and vehicle running emissions. In other words, when the trip length is increased, the VMT and vehicle running emissions increase as a result. Thus, vehicle running emissions can be reduced by decreasing the average overall trip length, by way of a local hire requirement or otherwise.

### Default Worker Trip Parameters and Potential Local Hire Requirements

As previously discussed, the number, length, and vehicle class of worker trips are utilized by CalEEMod to calculate emissions associated with the on-road vehicle trips required to transport workers to and from the Project site during construction. In order to understand how local hire requirements and associated worker trip length reductions impact GHG emissions calculations, it is important to consider the CalEEMod default worker trip parameters. CalEEMod provides recommended default values based on site-specific information, such as land use type, meteorological data, total lot acreage, project type and typical equipment associated with project type. If more specific project information is known, the user can change the default values and input project-specific values, but the California Environmental Quality Act ("CEQA") requires that such changes be justified by substantial evidence. The default number of construction-related worker trips is calculated by multiplying the

<sup>&</sup>lt;sup>4</sup> "Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at: <a href="http://www.aqmd.gov/docs/default-source/caleemod/02">http://www.aqmd.gov/docs/default-source/caleemod/02</a> appendix-a2016-3-2.pdf?sfvrsn=6, p. 14-15.

<sup>&</sup>lt;sup>5</sup> "Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at: <a href="http://www.aqmd.gov/docs/default-source/caleemod/02">http://www.aqmd.gov/docs/default-source/caleemod/02</a> appendix-a2016-3-2.pdf?sfvrsn=6, p. 23.

<sup>&</sup>lt;sup>6</sup> "Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at: <a href="http://www.aqmd.gov/docs/default-source/caleemod/02">http://www.aqmd.gov/docs/default-source/caleemod/02</a> appendix-a2016-3-2.pdf?sfvrsn=6, p. 15.

<sup>&</sup>lt;sup>7</sup> "CalEEMod User's Guide." CAPCOA, November 2017, available at: <a href="http://www.aqmd.gov/docs/default-source/caleemod/01">http://www.aqmd.gov/docs/default-source/caleemod/01</a> user-39-s-guide2016-3-2 15november2017.pdf?sfvrsn=4, p. 34.

<sup>8</sup> CalEEMod User Guide, available at: http://www.caleemod.com/, p. 1, 9.

number of pieces of equipment for all phases by 1.25, with the exception of worker trips required for the building construction and architectural coating phases.<sup>9</sup> Furthermore, the worker trip vehicle class is a 50/25/25 percent mix of light duty autos, light duty truck class 1 and light duty truck class 2, respectively."<sup>10</sup> Finally, the default worker trip length is consistent with the length of the operational home-to-work vehicle trips.<sup>11</sup> The operational home-to-work vehicle trip lengths are:

"[B]ased on the <u>location</u> and <u>urbanization</u> selected on the project characteristic screen. These values were <u>supplied by the air districts or use a default average for the state</u>. Each district (or county) also assigns trip lengths for urban and rural settings" (emphasis added). <sup>12</sup>

Thus, the default worker trip length is based on the location and urbanization level selected by the User when modeling emissions. The below table shows the CalEEMod default rural and urban worker trip lengths by air basin (see excerpt below and Attachment A).<sup>13</sup>

| Worke                    | r Trip Length by Air Basin |               |
|--------------------------|----------------------------|---------------|
| Air Basin                | Rural (miles)              | Urban (miles) |
| Great Basin Valleys      | 16.8                       | 10.8          |
| Lake County              | 16.8                       | 10.8          |
| Lake Tahoe               | 16.8                       | 10.8          |
| Mojave Desert            | 16.8                       | 10.8          |
| <b>Mountain Counties</b> | 16.8                       | 10.8          |
| North Central Coast      | 17.1                       | 12.3          |
| North Coast              | 16.8                       | 10.8          |
| Northeast Plateau        | 16.8                       | 10.8          |
| Sacramento Valley        | 16.8                       | 10.8          |
| Salton Sea               | 14.6                       | 11            |
| San Diego                | 16.8                       | 10.8          |
| San Francisco Bay Area   | 10.8                       | 10.8          |
| San Joaquin Valley       | 16.8                       | 10.8          |
| South Central Coast      | 16.8                       | 10.8          |
| South Coast              | 19.8                       | 14.7          |
| Average                  | 16.47                      | 11.17         |
| Minimum                  | 10.80                      | 10.80         |
| Maximum                  | 19.80                      | 14.70         |
| Range                    | 9.00                       | 3.90          |

<sup>&</sup>lt;sup>9</sup> "CalEEMod User's Guide." CAPCOA, November 2017, available at: <a href="http://www.aqmd.gov/docs/default-source/caleemod/01">http://www.aqmd.gov/docs/default-source/caleemod/01</a> user-39-s-guide2016-3-2 15november2017.pdf?sfvrsn=4, p. 34.

<sup>10 &</sup>quot;Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at:

http://www.aqmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6, p. 15.

<sup>&</sup>lt;sup>11</sup> "Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at:

http://www.aqmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6, p. 14.

<sup>12 &</sup>quot;Appendix A Calculation Details for CalEEMod." CAPCOA, October 2017, available at:

http://www.aqmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6, p. 21.

<sup>&</sup>lt;sup>13</sup> "Appendix D Default Data Tables." CAPCOA, October 2017, available at: <a href="http://www.aqmd.gov/docs/default-source/caleemod/05">http://www.aqmd.gov/docs/default-source/caleemod/05</a> appendix-d2016-3-2.pdf?sfvrsn=4, p. D-84 – D-86.

As demonstrated above, default rural worker trip lengths for air basins in California vary from 10.8- to 19.8-miles, with an average of 16.47 miles. Furthermore, default urban worker trip lengths vary from 10.8- to 14.7-miles, with an average of 11.17 miles. Thus, while default worker trip lengths vary by location, default urban worker trip lengths tend to be shorter in length. Based on these trends evident in the CalEEMod default worker trip lengths, we can reasonably assume that the efficacy of a local hire requirement is especially dependent upon the urbanization of the project site, as well as the project location.

### Practical Application of a Local Hire Requirement and Associated Impact

To provide an example of the potential impact of a local hire provision on construction-related GHG emissions, we estimated the significance of a local hire provision for the Village South Specific Plan ("Project") located in the City of Claremont ("City"). The Project proposed to construct 1,000 residential units, 100,000-SF of retail space, 45,000-SF of office space, as well as a 50-room hotel, on the 24-acre site. The Project location is classified as Urban and lies within the Los Angeles-South Coast County. As a result, the Project has a default worker trip length of 14.7 miles. In an effort to evaluate the potential for a local hire provision to reduce the Project's construction-related GHG emissions, we prepared an updated model, reducing all worker trip lengths to 10 miles (see Attachment B). Our analysis estimates that if a local hire provision with a 10-mile radius were to be implemented, the GHG emissions associated with Project construction would decrease by approximately 17% (see table below and Attachment C).

| Local Hire Provision Net Change                                  |        |
|------------------------------------------------------------------|--------|
| Without Local Hire Provision                                     |        |
| Total Construction GHG Emissions (MT CO <sub>2</sub> e)          | 3,623  |
| Amortized Construction GHG Emissions (MT CO <sub>2</sub> e/year) | 120.77 |
| With Local Hire Provision                                        |        |
| Total Construction GHG Emissions (MT CO2e)                       | 3,024  |
| Amortized Construction GHG Emissions (MT CO <sub>2</sub> e/year) | 100.80 |
| % Decrease in Construction-related GHG Emissions                 | 17%    |

As demonstrated above, by implementing a local hire provision requiring 10 mile worker trip lengths, the Project could reduce potential GHG emissions associated with construction worker trips. More broadly, any local hire requirement that results in a decreased worker trip length from the default value has the potential to result in a reduction of construction-related GHG emissions, though the significance of the reduction would vary based on the location and urbanization level of the project site.

This serves as an example of the potential impacts of local hire requirements on estimated project-level GHG emissions, though it does not indicate that local hire requirements would result in reduced construction-related GHG emission for all projects. As previously described, the significance of a local hire requirement depends on the worker trip length enforced and the default worker trip length for the project's urbanization level and location.

<sup>&</sup>lt;sup>14</sup> "Appendix D Default Data Tables." CAPCOA, October 2017, available at: <a href="http://www.aqmd.gov/docs/default-source/caleemod/05">http://www.aqmd.gov/docs/default-source/caleemod/05</a> appendix-d2016-3-2.pdf?sfvrsn=4, p. D-85.

### Disclaimer

SWAPE has received limited discovery. Additional information may become available in the future; thus, we retain the right to revise or amend this report when additional information becomes available. Our professional services have been performed using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable environmental consultants practicing in this or similar localities at the time of service. No other warranty, expressed or implied, is made as to the scope of work, work methodologies and protocols, site conditions, analytical testing results, and findings presented. This report reflects efforts which were limited to information that was reasonably accessible at the time of the work, and may contain informational gaps, inconsistencies, or otherwise be incomplete due to the unavailability or uncertainty of information obtained or provided by third parties.

Sincerely,

M Huxuu— Matt Hagemann, P.G., C.Hg.

Paul Rosenfeld

Paul E. Rosenfeld, Ph.D.

| Location Type | Location Name   | Rural H-W<br>(miles) | Urban H-W<br>(miles) |
|---------------|-----------------|----------------------|----------------------|
| Air Basin     | Great Basin     | 16.8                 | 10.8                 |
| Air Basin     | Lake County     | 16.8                 | 10.8                 |
| Air Basin     | Lake Tahoe      | 16.8                 | 10.8                 |
| Air Basin     | Mojave Desert   | 16.8                 | 10.8                 |
| Air Basin     | Mountain        | 16.8                 | 10.8                 |
| Air Basin     | North Central   | 17.1                 | 12.3                 |
| Air Basin     | North Coast     | 16.8                 | 10.8                 |
| Air Basin     | Northeast       | 16.8                 | 10.8                 |
| Air Basin     | Sacramento      | 16.8                 | 10.8                 |
| Air Basin     | Salton Sea      | 14.6                 | 11                   |
| Air Basin     | San Diego       | 16.8                 | 10.8                 |
| Air Basin     | San Francisco   | 10.8                 | 10.8                 |
| Air Basin     | San Joaquin     | 16.8                 | 10.8                 |
| Air Basin     | South Central   | 16.8                 | 10.8                 |
| Air Basin     | South Coast     | 19.8                 | 14.7                 |
| Air District  | Amador County   | 16.8                 | 10.8                 |
| Air District  | Antelope Valley | 16.8                 | 10.8                 |
| Air District  | Bay Area AQMD   | 10.8                 | 10.8                 |
| Air District  | Butte County    | 12.54                | 12.54                |
| Air District  | Calaveras       | 16.8                 | 10.8                 |
| Air District  | Colusa County   | 16.8                 | 10.8                 |
| Air District  | El Dorado       | 16.8                 | 10.8                 |
| Air District  | Feather River   | 16.8                 | 10.8                 |
| Air District  | Glenn County    | 16.8                 | 10.8                 |
| Air District  | Great Basin     | 16.8                 | 10.8                 |
| Air District  | Imperial County | 10.2                 | 7.3                  |
| Air District  | Kern County     | 16.8                 | 10.8                 |
| Air District  | Lake County     | 16.8                 | 10.8                 |
| Air District  | Lassen County   | 16.8                 | 10.8                 |
| Air District  | Mariposa        | 16.8                 | 10.8                 |
| Air District  | Mendocino       | 16.8                 | 10.8                 |
| Air District  | Modoc County    | 16.8                 | 10.8                 |
| Air District  | Mojave Desert   | 16.8                 | 10.8                 |
| Air District  | Monterey Bay    | 16.8                 | 10.8                 |
| Air District  | North Coast     | 16.8                 | 10.8                 |
| Air District  | Northern Sierra | 16.8                 | 10.8                 |
| Air District  | Northern        | 16.8                 | 10.8                 |
| Air District  | Placer County   | 16.8                 | 10.8                 |
| Air District  | Sacramento      | 15                   | 10                   |

| Air District | San Diego       | 16.8  | 10.8  |
|--------------|-----------------|-------|-------|
| Air District | San Joaquin     | 16.8  | 10.8  |
| Air District | San Luis Obispo | 13    | 13    |
| Air District | Santa Barbara   | 8.3   | 8.3   |
| Air District | Shasta County   | 16.8  | 10.8  |
| Air District | Siskiyou County | 16.8  | 10.8  |
| Air District | South Coast     | 19.8  | 14.7  |
| Air District | Tehama County   | 16.8  | 10.8  |
| Air District | Tuolumne        | 16.8  | 10.8  |
| Air District | Ventura County  | 16.8  | 10.8  |
| Air District | Yolo/Solano ,   | 15    | 10    |
| County       | Alameda         | 10.8  | 10.8  |
| County       | Alpine          | 16.8  | 10.8  |
| County       | Amador          | 16.8  | 10.8  |
| County       | Butte           | 12.54 | 12.54 |
| County       | Calaveras       | 16.8  | 10.8  |
| County       | Colusa          | 16.8  | 10.8  |
| County       | Contra Costa    | 10.8  | 10.8  |
| County       | Del Norte       | 16.8  | 10.8  |
| County       | El Dorado-Lake  | 16.8  | 10.8  |
| County       | El Dorado-      | 16.8  | 10.8  |
| County       | Fresno          | 16.8  | 10.8  |
| County       | Glenn           | 16.8  | 10.8  |
| County       | Humboldt        | 16.8  | 10.8  |
| County       | Imperial        | 10.2  | 7.3   |
| County       | Inyo            | 16.8  | 10.8  |
| County       | Kern-Mojave     | 16.8  | 10.8  |
| County       | Kern-San        | 16.8  | 10.8  |
| County       | Kings           | 16.8  | 10.8  |
| County       | Lake            | 16.8  | 10.8  |
| County       | Lassen          | 16.8  | 10.8  |
| County       | Los Angeles-    | 16.8  | 10.8  |
| County       | Los Angeles-    | 19.8  | 14.7  |
| County       | Madera          | 16.8  | 10.8  |
| County       | Marin           | 10.8  | 10.8  |
| County       | Mariposa        | 16.8  | 10.8  |
| County       | Mendocino-      | 16.8  | 10.8  |
| County       | Mendocino-      | 16.8  | 10.8  |
| County       | Mendocino-      | 16.8  | 10.8  |
| County       | Mendocino-      | 16.8  | 10.8  |
| County       | Merced          | 16.8  | 10.8  |
| County       | Modoc           | 16.8  | 10.8  |
| County       | Mono            | 16.8  | 10.8  |
| County       | Monterey        | 16.8  | 10.8  |
| County       | Napa            | 10.8  | 10.8  |

| _                |                            |              |              |
|------------------|----------------------------|--------------|--------------|
| County           | Nevada                     | 16.8         | 10.8         |
| County           | Orange                     | 19.8         | 14.7         |
| County           | Placer-Lake                | 16.8         | 10.8         |
| County<br>County | Placer-Mountain<br>Placer- | 16.8<br>16.8 | 10.8<br>10.8 |
| •                | Plumas                     | 16.8         | 10.8         |
| County           |                            |              |              |
| County<br>County | Riverside-<br>Riverside-   | 16.8<br>19.8 | 10.8<br>14.7 |
| County           | Riverside-Salton           | 14.6         | 14.7         |
| •                | Riverside-South            | 19.8         |              |
| County           |                            |              | 14.7         |
| County           | Sacramento                 | 15           | 10           |
| County           | San Benito                 | 16.8         | 10.8         |
| County           | San Bernardino-            | 16.8         | 10.8         |
| County           | San Bernardino-            | 19.8         | 14.7         |
| County           | San Diego                  | 16.8         | 10.8         |
| County           | San Francisco              | 10.8         | 10.8         |
| County           | San Joaquin                | 16.8         | 10.8         |
| County           | San Luis Obispo            | 13           | 13           |
| County           | San Mateo                  | 10.8         | 10.8         |
| County           | Santa Barbara-             | 8.3          | 8.3          |
| County           | Santa Barbara-             | 8.3          | 8.3          |
| County           | Santa Clara                | 10.8         | 10.8         |
| County           | Santa Cruz                 | 16.8         | 10.8         |
| County           | Shasta                     | 16.8         | 10.8         |
| County           | Sierra                     | 16.8         | 10.8         |
| County           | Siskiyou                   | 16.8         | 10.8         |
| County           | Solano-                    | 15           | 10           |
| County           | Solano-San                 | 16.8         | 10.8         |
| County           | Sonoma-North               | 16.8         | 10.8         |
| County           | Sonoma-San                 | 10.8         | 10.8         |
| County           | Stanislaus                 | 16.8         | 10.8         |
| County           | Sutter                     | 16.8         | 10.8         |
| County           | Tehama                     | 16.8         | 10.8         |
| County           | Trinity                    | 16.8         | 10.8         |
| County           | Tulare                     | 16.8         | 10.8         |
| County           | Tuolumne                   | 16.8         | 10.8         |
| County           | Ventura                    | 16.8         | 10.8         |
| County           | Yolo                       | 15           | 10           |
| County           | Yuba                       | 16.8         | 10.8         |
| Statewide        | Statewide                  | 16.8         | 10.8         |
|                  |                            |              |              |

| Worker                 | Trip Length by Air Basin |               |
|------------------------|--------------------------|---------------|
| Air Basin              | Rural (miles)            | Urban (miles) |
| Great Basin Valleys    | 16.8                     | 10.8          |
| Lake County            | 16.8                     | 10.8          |
| Lake Tahoe             | 16.8                     | 10.8          |
| Mojave Desert          | 16.8                     | 10.8          |
| Mountain Counties      | 16.8                     | 10.8          |
| North Central Coast    | 17.1                     | 12.3          |
| North Coast            | 16.8                     | 10.8          |
| Northeast Plateau      | 16.8                     | 10.8          |
| Sacramento Valley      | 16.8                     | 10.8          |
| Salton Sea             | 14.6                     | 11            |
| San Diego              | 16.8                     | 10.8          |
| San Francisco Bay Area | 10.8                     | 10.8          |
| San Joaquin Valley     | 16.8                     | 10.8          |
| South Central Coast    | 16.8                     | 10.8          |
| South Coast            | 19.8                     | 14.7          |
| Average                | 16.47                    | 11.17         |
| Mininum                | 10.80                    | 10.80         |
| Maximum                | 19.80                    | 14.70         |
| Range                  | 9.00                     | 3.90          |

Attachment B

CalEEMod Version: CalEEMod.2016.3.2

Page 1 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

### Village South Specific Plan (Proposed) Los Angeles-South Coast County, Annual

## 1.0 Project Characteristics

### 1.1 Land Usage

| Land Uses                           | Size   | Metric        | Lot Acreage | Floor Surface Area | Population |
|-------------------------------------|--------|---------------|-------------|--------------------|------------|
| General Office Building             | 45.00  | 1000sqft      | 1.03        | 45,000.00          | 0          |
| High Turnover (Sit Down Restaurant) | 36.00  | 1000sqft      | 0.83        | 36,000.00          | 0          |
| Hotel                               | 50.00  | Room          | 1.67        | 72,600.00          | 0          |
| Quality Restaurant                  | 8.00   | 1000sqft      | 0.18        | 8,000.00           | 0          |
| Apartments Low Rise                 | 25.00  | Dwelling Unit | 1.56        | 25,000.00          | 72         |
| Apartments Mid Rise                 | 975.00 | Dwelling Unit | 25.66       | 975,000.00         | 2789       |
| Regional Shopping Center            | 56.00  | 1000sqft      | 1.29        | 56,000.00          | 0          |

## 1.2 Other Project Characteristics

| Days) 33                  | 2028             |                            | 9000                       |
|---------------------------|------------------|----------------------------|----------------------------|
| Precipitation Freq (Days) | Operational Year |                            | N2O Intensity<br>(lb/MWhr) |
| 2.2                       |                  |                            | 0.029                      |
| Wind Speed (m/s)          |                  | nia Edison                 | CH4 Intensity              |
| Urban                     | o o              | Southern California Edison | 702.44                     |
| Urbanization              | Climate Zone     | Utility Company            | CO2 Intensity<br>(Ib/MWhr) |

# 1.3 User Entered Comments & Non-Default Data

Date: 1/6/2021 1:52 PM Page 2 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

Construction Phase - See SWAPE comment regarding individual construction phase lengths.

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use

Construction Off-road Equipment Mitigation - See SWAPE comment on construction-related mitigation.

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

| New Value     | 0.00              | 0.00              | 0.00          | 0.00          | 6.17            | 3.87            | 1.39            | 79.82           | 3.75           | 63.99          | 10.74           | 6.16            | 4.18            | 0.69            | 78.27           |
|---------------|-------------------|-------------------|---------------|---------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Default Value | 1,019.20          | 1,019.20          | 1.25          | 48.75         | 7.16            | 6.39            | 2.46            | 158.37          | 8.19           | 94.36          | 49.97           | 6.07            | 5.86            | 1.05            | 131.84          |
| Column Name   | FireplaceWoodMass | FireplaceWoodMass | NumberWood    | NumberWood    | ST_TR           | ST_TR           | ST_TR           | ST_TR           | ST_TR          | ST_TR          | ST_TR           | SU_TR           | SU_TR           | SU_TR           | ST_US           |
| Table Name    | tblFireplaces     | tblFireplaces     | tblFireplaces | tblFireplaces | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehideTrips | tblVehideTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips |

Page 3 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

| _               |                 |                 |                 | <del>,</del>    | ,               |                 |                 |                 |                 |                 | ,               |                    |                    |                  |                  |                   | <del>,</del>      |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------------------|------------------|------------------|-------------------|-------------------|
| 3.20            | 57.65           | 6.39            | 5.83            | 4.13            | 6.41            | 65.80           | 3.84            | 62.64           | 9.43            | 0.00            | 0.00            | 0.00               | 0.00               | 0.00             | 0.00             | 0.00              | 0.00              |
| 5.95            | 72.16           | 25.24           | 6,59            | 6.65            | 11.03           | 127.15          | 8.17            | 89.95           | 42.70           | 1.25            | 48.75           | 1.25               | 48.75              | 25.00            | 25.00            | 09'666            | 999.60            |
| SU_TR           | SU_TR           | su_tr           | WD_TR           | NumberCatalytic | NumberCatalytic | NumberNoncatalytic | NumberNoncatalytic | WoodstoveDayYear | WoodstoveDayYear | WoodstoveWoodMass | WoodstoveWoodMass |
| tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tbIVehicleTrips | tbtVehicleTrips | tblVehicleTrips | tbl/ehicleTrips | tblVehicleTrips | tblVehicleTrips | tbIVehicleTrips | tblWoodstoves   | tblWoodstoves   | tblWoodstoves      | tblWoodstoves      | tblWoodstoves    | tblWoodstoves    | tblWoodstoves     | tblWoodstoves     |

2.0 Emissions Summary

Date: 1/6/2021 1:52 PM Page 4 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.1 Overall Construction Unmitigated Construction

| c02e                         |         | 214.6993        | 1,724.918<br>7 | 1,630.492<br>5 | 53.1082         | 1,724.918<br>7             |
|------------------------------|---------|-----------------|----------------|----------------|-----------------|----------------------------|
| NZO                          |         | 0.0000          | 0.0000         | 0.0000         | 0.0000          | 0.000.0                    |
| СН4                          | ıyı.    | 0.0601          | 0.1294         | 0.1185         | 8.0200e-<br>003 | 0.1294                     |
| Total CO2                    | LM      | 213.1969        | 1,721.682<br>6 | 1,627.529<br>5 | 52.9078         | 1,721.682<br>6             |
| Bio- CO2 NBio- CO2 Total CO2 |         | 0.0000 213.1969 | 1,721.682<br>6 | 1,627.529<br>5 | 52.9078         | 1,721.682 1,721.682<br>6 6 |
| Bio- CO2                     |         | 0.0000          | 0.000.0        | 0.0000         | 0.0000          | 0.000.0                    |
| PM2.5<br>Total               |         | 0.2549          | 0.4588         | 0.4138         | 0.0147          | 0.4588                     |
| Exhaust<br>PM2.5             |         | 0.0754          | 0.1128         | 0.0935         | 6.0400e-<br>003 | 0.1128                     |
| Fugitive<br>PM2.5            |         | 0.1795          | 0.3460         | 0.3203         | 8.6300e-<br>003 | 0.3460                     |
| PIM10<br>Total               |         | 0.4986          | 1.4259         | 1.2959         | 0.0390          | 1.4259                     |
| Exhaust<br>PM10              | tons/yr | 0.0817          | 0.1201         | 9660.0         | 6.4700e-<br>003 | 0.1201                     |
| Fugitive<br>PM10             | fou     | 0.4169          | 1.3058         | 1.1963         | 0.0325          | 1.3058                     |
| S02                          |         | 2.4000e-<br>003 | 0.0189         | 0.0178         | 5.9000e-<br>004 | 0.0189                     |
| တ                            |         | 1.8242 1.1662   | 6.1625         | 5.6747         | 0.2810          | 6.1625                     |
| NOX                          |         | 1.8242          | 4.1142         | 3.3649         | 0.1335          | 4.1142                     |
| ROG                          |         | 0.1713          | 0.6904         | 0.6148         | 4.1619          | 4.1619                     |
|                              | Year    | 2021            | 2022           | 2023           | 2024            | Maximum                    |

Page 5 of 44 CalEEMod Version: CalEEMod.2016.3.2

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.1 Overall Construction Mitigated Construction

| Exhaust   PM10   Fugitive   Exhaust   PM2.5   Bio CO2   NBio CO2   Total CO2   CH4   N20   N20 | Territoria (1)    | 111 / 11 |                 |                |                |                 | $\overline{}$ |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-----------------|----------------|----------------|-----------------|---------------|-----------|
| ROG   NOX   CO   SO2   Fugitive   Exhaust   PM10   Fugitive   Exhaust   PM25   PM25   Total   PM25   Bio-CO2   NBio-CO2   Total CO2   CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 11 11 11       |          | 214.6991        | 1,724.918<br>3 | 1,630.492      | 53.1082         | 1,724.918     | C02e      |
| ROG   NOX   CO   SO2   Fugitive   Exhaust   PM10   Fugitive   Exhaust   PM25   PM25   Total   PM25   Bio-CO2   NBio-CO2   Total CO2   CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N2O               |          | 0.0000          | 0.0000         | 0.0000         | 0.0000          | 0.0000        | N20       |
| ROG   NOx   CO   SO2   Fugitive   Exhaust   PM10   Fugitive   Exhaust   PM2.5   PM2.5   Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | сн4               | M.       | 0.0601          | 0.1294         | 0.1185         | 8.0200e-<br>003 | 0.1294        |           |
| ROG   NOx   CO   SO2   Fugitive   Exhaust   PM10   Fugitive   Exhaust   PM2.5   PM2.5   Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total CO2         | MT       | 213.1967        | 1,721.682      | 1,627.529      | 52.9077         | 1,721.682     | otal CO2  |
| ROG   NOx   CO   SO2   Fugitive   Exhaust   PM10   Fugitive   Exhaust   PM2.5   PM2.5   Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NBio-CO2          |          |                 | 1,721.682<br>3 | 1,627.529<br>1 | 52.9077         | 1,721.682     | Bio-CO2 T |
| ROG   NOx   CO   SO2   Fugitive   Exhaust   PM10   Fugitive   Exhaust   PM2.5   PM2.5   Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bio-CO2           |          | 0.0000          | •              |                | 0.0000          | 0.0000        | Bio-CO2 N |
| ROG   NOX   CO   SO2   Fugitive   Exhaust   PM10   Fugitive   Exhaust   PM10   Total   PM2.5   PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PM2.5<br>Total    |          | 0.2549          | 0.4588         | 0.4138         | 0.0147          | 0.4588        |           |
| ROG   NOX   CO   SO2   Fugitive   Exhaust   PM10   Fugitive   FM25   FM25   FM25   FM35   FM25   F | Exhaust<br>PM2.5  |          | 0.0754          | 0.1128         | ;              | 6.0400e-<br>003 | 0.1128        |           |
| ROG   NOX   CO   SO2   Fugitive   Exhaust   PM10   Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fugitive<br>PM2.5 |          | 0.1795          | 0.3460         | 0.3203         | 8.6300e-<br>003 | 0.3460        |           |
| ROG   NOX   CO   SO2   Fugitive   Exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PM10<br>Total     |          | 0.4986          | 1.4259         | 1.2959         |                 | 1.4259        | 11.13     |
| ROG   NOX   CO   SO2   Fugitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exhaust<br>PM10   | síyr     | 0.0817          | 0.1201         | 0.0996         | 6.4700e-<br>003 | 0.1201        |           |
| 0.1713 1.8242 1.1662<br>0.6904 4.1142 6.1625<br>0.6148 3.3648 5.6747<br>4.1619 0.1335 0.2810<br>4.1619 4.1142 6.1625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fugitive<br>PM10  | (ou      | 0.4169          | 1.3058         |                |                 | 1.3058        |           |
| 0.1713 1.8242 1.1662<br>0.6904 4.1142 6.1625<br>0.6148 3.3648 5.6747<br>4.1619 0.1335 0.2810<br>4.1619 4.1142 6.1625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S02               |          | 2.4000e-<br>003 | 0.0189         | 0.0178         | 5.9000e-<br>004 | 0.0189        | 202       |
| 0.1713<br>0.6904<br>0.6148<br>4.1619<br>4.1619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | တ                 |          | 1.1662          | 6.1625         | 5.6747         | 0.2810          |               | တ         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NOX               |          | 1.8242          | 4.1142         | 3.3648         | 0.1335          | 4.1142        |           |
| Year<br>2021<br>2022<br>2023<br>2024<br>2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ROG               |          | 0.1713          | 0.6904         | 0.6148         | 4.1619          | 4.1619        | ROG       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Year     | 2021            | 2022           | 2023           | 2024            | Maximum       |           |

| N20 CO2e                    | 0.00 0.00            |                                              |              | Τ         | Γ         |           | Ī          | <u> </u>  | <u> </u>  | ľ         |
|-----------------------------|----------------------|----------------------------------------------|--------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|
| CH4                         | 0.00                 | quarter)                                     |              |           |           |           |            |           |           |           |
| Total CO2                   | 0.00                 | VOX (tons/                                   |              |           |           |           |            |           |           |           |
| NBio-CO2                    | 0.00                 | ed ROG + I                                   | 1.4103       | 1.3613    | 1.1985    | 1.1921    | 1.1918     | 1.0774    | 1.0320    | 1.0260    |
| Bio- CO2 NBio-CO2 Total CO2 | 00.0                 | Maximum Mitigated ROG + NOX (tons/quarter)   |              | :         |           |           |            |           |           |           |
| PM2.5<br>Total              | 0.00                 | Max                                          |              |           |           | :         |            |           |           |           |
| Exhaust<br>PM2.5            | 0.00                 | quarter)                                     |              |           |           |           |            |           |           |           |
| Fugitive<br>PM2.5           | 0.00                 | Maximum Unmitigated ROG + NOX (tons/quarter) |              |           |           |           |            |           |           |           |
| PIM10<br>Total              | 0.00                 | ated ROG +                                   | 1.4103       | 1,3613    | 1.1985    | 1.1921    | 1.1918     | 1.0774    | 1.0320    | 1.0260    |
| Exhaust<br>PM10             | 0.00                 | ım Unmitiga                                  |              |           |           |           |            |           |           |           |
| Fugitive<br>PM10            | 0.00                 | Maximu                                       |              |           |           |           |            |           |           |           |
| S02                         | 0.00                 | End Date                                     | 11-30-2021   | 2-28-2022 | 5-31-2022 | 8-31-2022 | 11-30-2022 | 2-28-2023 | 5-31-2023 | 8-31-2023 |
| 00                          | 0.00                 | End                                          | 11-30        | 2-28      | 5-31      | 8-31      | 11-30      | 2-28      | 5-31      | 8-31      |
| XON<br>ON                   | 0.00                 | Start Date                                   | 9-1-2021     | 12-1-2021 | 3-1-2022  | 6-1-2022  | 9-1-2022   | 12-1-2022 | 3-1-2023  | 6-1-2023  |
| ROG                         | 0.00                 | SE SE                                        | <sub>ф</sub> | 12.       | ę         | هٰ        | 6          | 12.       | 3-        | 9         |
|                             | Percent<br>Reduction | Quarter                                      | -            | 2         | 6         | 4         | 5          | 9         | 7         | 8         |

CalEEMod Version: CalEEMod.2016.3.2

1.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

| 1.0265     | 2.8857    | 1.6207    | 2.8857  |
|------------|-----------|-----------|---------|
| 1.0265     | 2.8857    | 1.6207    | 2.8857  |
| 11-30-2023 | 2-29-2024 | 5-31-2024 | Highest |
| 9-1-2023   | 12-1-2023 | 3-1-2024  |         |
| 6          | 10        | 11        |         |

### 2.2 Overall Operational

**Unmitigated Operational** 

| C02e                         |          | 222.5835                | 3,913.283<br>3  | 7,629.016<br>2             | 514.8354 | 683.7567 | 12,963.47<br>51 |
|------------------------------|----------|-------------------------|-----------------|----------------------------|----------|----------|-----------------|
| N2O                          |          | 3.7400e-<br>003         | 0.0468          | 0.0000                     | 0.0000   | 0.0755   | 0.1260          |
| CH4                          | 5.       | 0.0201                  | 0.1303          | 0.3407                     | 12.2811  | 3.0183   | 15.7904         |
| Total CO2                    | MTlyr    | 220.9670                | 3,896.073<br>2  | 7,620.498<br>6             | 207.8079 | 585.8052 | 12,531.15<br>19 |
| Bio- CO2 NBio- CO2 Total CO2 |          | 220.9670 220.9670       | 3,896.073<br>2  | 7,620.498 7,620.498<br>6 6 | 0.000.0  | 556.6420 | 12,294.18<br>07 |
| Bio- CO2                     |          | 0.0000                  | 0.0000          | 0.0000                     | 207.8079 | 29.1632  | 236.9712        |
| PM2.5<br>Total               |          | 0.0714                  | 9960.0          | 2.1434                     | 0.0000   | 0.0000   | 2.3114          |
| Exhaust<br>PM2.5             |          | 0.0714                  | 9960.0          | 0.0539                     | 0.0000   | 0.000.0  | 0.2219          |
| Fugitive<br>PM2.5            |          |                         |                 | 2.0895                     |          |          | 2.0895          |
| PIM10<br>Total               |          | 0.0714                  | 9960.0          | 7.8559                     | 0.0000   | 0.0000   | 8.0240          |
| Exhaust<br>PM10              | síyr     | 0.0714                  | 0.0966          | 0.0580                     | 0.0000   | 0.0000   | 0.2260          |
| Fugitive<br>PM10             | tons/yr  |                         |                 | 7.7979                     |          |          | 6262.2          |
| 802                          |          | 1.6700e-<br>003         | 7.6200e-<br>003 | 0.0821                     |          |          | 0.0914          |
| 8                            |          | 10.3804                 | 0.7770          | 19.1834                    |          |          | 30.3407         |
| ×ON                          |          | 0.2950 10.3804 1.6700e- | 1.2312          | 7.9962                     |          |          | 9.5223          |
| ROG                          |          | 5.1437                  | 0.1398          | 1.5857                     |          |          | 6.8692          |
|                              | Category | Area                    | Energy          | Mobile                     | Waste    | Water    | Total           |

Date: 1/6/2021 1:52 PM Page 7 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.2 Overall Operational

### Mitigated Operational

| Pån Dress           | nghiê (178 | I                       | ' m                        | ¹.o                          | • •      | • .      |                 |
|---------------------|------------|-------------------------|----------------------------|------------------------------|----------|----------|-----------------|
| CO2e                |            | 222.5835                | 3,913.283<br>3             | 7,629.016                    | 514.8354 | 683.7567 | 12,963.47<br>51 |
| NZO                 |            | 3.7400e-<br>003         | 0.0468                     | 0.0000                       | 0.0000   | 0.0755   | 0.1260          |
| СН4                 | ķ          | 0.0201                  | 0.1303                     | 0.3407                       | 12.2811  | 3.0183   | 15.7904         |
| Total CO2           | MTØ        | 220.9670                | 3,896.073<br>2             | 7,620.498<br>6               | 207.8079 | 585.8052 | 12,531.15<br>19 |
| NBio- CO2 Total CO2 |            | 220.9670 220.9670       | 3,896.073 3,896.073<br>2 2 | 7,620.498 • 7,620.498<br>6 6 | 0.000.0  | 556.6420 | 12,294.18<br>07 |
| Bio-CO2             |            | 0.000.0                 | 0.0000                     | 0.000.0                      | 207.8079 | 29.1632  | 236.9712        |
| PM2.5<br>Total      |            | 0.0714                  | 0.0966                     | 2.1434                       | 0.000.0  | 0.000.0  | 2.3114          |
| Exhaust<br>PM2.5    |            | 0.0714                  | 9960.0                     | 0.0539                       | 0.000.0  | 0.0000   | 0.2219          |
| Fugitive<br>PM2.5   |            |                         |                            | 2.0895                       |          |          | 2.0895          |
| PM10<br>Total       |            | 0.0714                  | 0.0966                     | 7.8559                       | 0.0000   | 0.0000   | 8.0240          |
| Exhaust<br>PM10     | styr       | 0.0714                  | 9960.0                     | 0.0580                       | 0.0000   | 0.0000   | 0.2260          |
| Fugitive<br>PM10    | tons/yr    |                         |                            | 7.7979                       |          |          | 7.7979          |
| S02                 |            | 1.6700e-<br>003         | 7.6200e-<br>003            | 0.0821                       |          |          | 0.0914          |
| 95                  |            | 0.2950 10.3804 1.6700e- | 0.7770                     | 19.1834                      |          |          | 30.3407         |
| NOX                 |            | 0.2950                  | 1.2312                     | 7.9962                       |          |          | 9.5223          |
| ROG                 |            | 5.1437                  | 0.1398                     | 1.5857                       |          |          | 6.8692          |
|                     | Category   | Area                    | Energy                     | Mobile                       | Waste    | Water    | Total           |

CO2e

N20

CH4

Bio- CO2 NBio-CO2 Total CO2

PM2.5 Total

Exhaust PM2.5

Fugitive PM2.5

PM10 Total

Exhaust PM10

Fugitive PM10

802

ဝ

NOX

ROG

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Percent Reduction

### 3.0 Construction Detail

### **Construction Phase**

CalEEMod Version: CalEEMod.2016.3.2

Page 8 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

| Phase<br>Number | Phase Name            | Phase Type                | Start Date | End Date   | Num Days Num Days<br>Week | Num Days | Phase Description |
|-----------------|-----------------------|---------------------------|------------|------------|---------------------------|----------|-------------------|
|                 | Demolition            | tion                      | 9/1/2021   | 10/12/2021 | 2                         | 30       |                   |
|                 | Site Preparation      | eparation                 |            | 11/9/2021  | 5                         | 20       | 1                 |
| :<br>:<br>:     | Grading               | 6                         | 11/10/2021 | 1/11/2022  | 5                         | 45       | 1                 |
|                 | Construction          | g Construction            |            | 12/12/2023 | 5                         | 500      | 1                 |
|                 | Paving                | <br>!<br>!<br>!<br>!<br>! | 12/13/2023 | 1/30/2024  | 5                         | 35       |                   |
| ;<br>;<br>;     | Architectural Coating | Architectural Coating     | 1/31/2024  | 3/19/2024  | 5                         | 35       |                   |

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

### OffRoad Equipment

Date: 1/6/2021 1:52 PM Page 9 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

| Demolition         Concrete/Industrial Saws         1         8.00         81           Demolition         Excavators         3         8.00         158           Demolition         Rubber Tired Dozers         3         8.00         247           Site Preparation         Rubber Tired Dozers         3         8.00         247           Grading         Excavators         2         8.00         187           Grading         Excavators         1         8.00         187           Grading         Graders         2         8.00         187           Grading         Graders         2         8.00         97           Grading         Tractors/Loaders/Backhoes         2         8.00         97           Grading         Tractors/Loaders/Backhoes         3         8.00         89           Building Construction         Tractors/Loaders/Backhoes         3         7.00         97           Building Construction         Tractors/Loaders/Backhoes         3         8.00         46           Building Construction         Weders         4         8.00         46           Building Construction         Tractors/Loaders/Backhoes         3         8.00         46      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phase Name            | Offroad Equipment Type    | Amount | Usage Hours | Horse Power | Load Factor |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|--------|-------------|-------------|-------------|
| on Excavators         5         6.00           on Rubber Tired Dozers         2         8.00         2           saration         Rubber Tired Dozers         4         8.00         2           saration         Tractors/Loaders/Backhoes         2         8.00         7           Construction         Cranes         2         8.00         2           Construction         Cranes         3         8.00         2           Construction         Generator Sets         1         7.00         2           Construction         Tractors/Loaders/Backhoes         3         8.00         7           Construction         Tractors/Loaders/Backhoes         3         7.00         2           Construction         Paving Equipment         2         8.00         7           Paving Equipment         2         8.00         7           Rollers         8.00         7           Rollers         8.00         7           Rollers         8.00         8.00           Rollers         8.00         8.00           Rollers         8.00         8.00           Rollers         8.00         8.00           Rollers         8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Demolition            | Concrete/Industrial Saws  |        | 8.00        | 81          | 0.73        |
| on stration         Rubber Tired Dozers         8.00         2         8.00         2         8.00         2         8.00         7         2         8.00         7         8.00         7         8.00         7         8.00         7         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         8.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00         9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Demolition            | Excavators                | (C)    | 8.00        | 158         | 0.38        |
| Saration         Rubber Tired Dozers         4         8.00         2         8.00         7         2         8.00         7         4         8.00         7         7         7         7         7         8         9         9         7         8         9         9         7         9         7         9         8         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Demolition            | Rubber Tired Dozers       | 2      | 8.00        | 247         | 0.40        |
| variation         Tractors/Loaders/Backhoes         4         8.00           Graders         Excavators         2         8.00         1           Graders         Scrapers         2         8.00         2           Construction         Cranes         2         8.00         2           Construction         Construction         Generator Sets         1         8.00           Construction         Tractors/Loaders/Backhoes         3         8.00           Construction         Tractors/Loaders/Backhoes         3         7.00           Construction         Paving Equipment         2         8.00           Paving Equipment         2         8.00         1           Rollers         8.00         1         8.00           Rollers         8.00         1         8.00           Rollers         8.00         1         6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Site Preparation      | Rubber Tired Dozers       | e      | 8.00        | 247         | 0.40        |
| Excavators         Excavators         2         8.00         7           Graders         Graders         8.00         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         9         8         9         8         9         9         8         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Preparation      | Tractors/Loaders/Backhoes | 4      | 8.00        | 76          | 0.37        |
| Construction         Construction         Construction         Construction         Construction         Air Compressors         4 8.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grading               | Excavators                | 2      | 8.00        | 158         | 0.38        |
| Rubber Tired Dozers         1         8.00         2           Scrapers         Scrapers         2         8.00         3           Construction         Forklifts         3         8.00         2           Construction         Forklifts         3         8.00         3           Construction         Tractors/Loaders/Backhoes         1         8.00         1           Construction         Welders         3         7.00         1           Construction         Pavers         2         8.00         1           Paving Equipment         2         8.00         1           Rollers         2         8.00         1           Ari Compressors         1         6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Grading               | Graders                   |        | 8.00        | 187         | 0.41        |
| Construction   Cranes   Construction   Generator Sets   Construction   Const | Grading               | Rubber Tired Dozers       |        | 8.00        | 247         | 0.40        |
| Tractors/Loaders/Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Grading               | Scrapers                  | 2      | 8.00        | 367         | 0.48        |
| Construction   Cranes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Grading               | Tractors/Loaders/Backhoes | 2      | 8.00        | 26          | 0.37        |
| Construction         Forklifts         3         8.00           Construction         Tractors/Loaders/Backhoes         3         7.00           Construction         Welders         7         8.00           Construction         Pavers         2         8.00           Paving Equipment         2         8.00           Rollers         2         8.00           Air Compressors         1         6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Building Construction | Cranes                    |        | 7.00        | 231         | 0.29        |
| Construction   Generator Sets   1   8.00     Construction   Tractors/Loaders/Backhoes   3   7.00     Construction   Welders   1   8.00     Pavers   Paving Equipment   2   8.00   7     Rollers   Paving Equipment   2   8.00   7     Rollers   Rollers   2   8.00   7     Rollers   Rollers   1   6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | Forklifts                 | က      | 8.00        | 68          | 0.20        |
| Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Building Construction | Generator Sets            | -      | 8.00        | 2           | 0.74        |
| Construction   Welders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Building Construction | Tractors/Loaders/Backhoes | ဇ      | 7.00        | 76          | 0.37        |
| Pavers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Building Construction | Welders                   |        | 8.00        | 46          | 0.45        |
| Paving Equipment  Rollers  2 8.00  4.00  Air Coating  Air Compressors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paving                | Pavers                    | 2      | 8.00        | 130         | 0.42        |
| Rollers 8.00 tural Coating Air Compressors 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Paving                | Paving Equipment          | 2      | 8.00        | 132         | 0.36        |
| Air Compressors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Rollers                   | 2      | 8.00        | 80          | 0.38        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Air Compressors           | 1      | 6.00        | 78          | 0.48        |

Trips and VMT

Page 10 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

| Phase Name            | Phase Name Offroad Equipment Worker Trip Count Number | Worker Trip<br>Number | Vendor Trip<br>Number | Hauling Trip<br>Number | Worker Trip<br>Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Vendor Trip Hauling Trip Worker Trip Vendor Trip Hauling Trip Worker Vehicle Number Length Length Class | Vendor Hauling<br>Vehicle Class Vehicle Clas | Hauling<br>Vehicle Class |
|-----------------------|-------------------------------------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|
| Demolition            | φ                                                     | 15.00                 | 00.00                 | 45                     | 14.70                 | 6.90                  | 20.00                  | 20.00 LD_Mix                                                                                            | HDT_Mix                                      | HHDT                     |
| Site Preparation      |                                                       | 18.00                 | 00.0                  | 0.00                   | 14.70                 | 6.90                  |                        | 20.00 LD_Mix                                                                                            | HDT_Mix                                      | HHDT                     |
| Grading               | 8                                                     | 20.00                 | 00.00                 |                        | 14.70                 | 06.9                  | 20.00                  | 20.00 LD_Mix                                                                                            | HDT_Mix                                      | HHDT                     |
| Building Construction | 6                                                     | 801.00                | 143.00                | 00.0                   | 14.70                 | 06.9                  |                        | 20.00 LD_Mix                                                                                            | HDT_Mix                                      | HHDT                     |
| Paving                | 9                                                     | 15.00                 | 00.00                 | 00.00                  | 14.70                 | 06.9                  | 20.00                  | 20.00 LD_Mix                                                                                            | HDT_Mix                                      | HHDT                     |
| Architectural Coating | #                                                     | 160.00                | 00.0                  | 00.0                   | 14.70                 | 9.90                  | 20.00                  | 20.00 LD_Mix                                                                                            | HDT_Mix                                      | HHDT                     |

## 3.1 Mitigation Measures Construction

3.2 Demolition - 2021

## **Unmitigated Construction On-Site**

| N2O CO2e                        |          | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  | 0 51.3601              | 0 51.3601       |
|---------------------------------|----------|--------------------------------------------|------------------------|-----------------|
| N20                             |          | 0.000                                      | 0.0000                 | 0.0000          |
| CH4                             | MT/yr    | 0.0000                                     | 0.0144                 | 0.0144          |
| Total CO2                       | M        | 0.0000                                     | 51.0012                | 51.0012 0.0144  |
| Bio-CO2 NBio-CO2 Total CO2 CH4  |          | 0.0000                                     | 51.0012 51.0012 0.0144 | 51.0012         |
| Bio-CO2                         |          | 0.0000                                     | 0.0000                 | 0.0000          |
| PM2.5<br>Total                  |          | 7.5100e-<br>003                            | 0.0216                 | 0.0291          |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.0496 7.5100e- 0.0000 7.5100e-<br>003 003 | 0.0216                 | 0.0216          |
| Fugitive<br>PM2.5               |          | 7,5100e-<br>003                            |                        | 7.5100e-<br>003 |
| t PM10<br>Total                 |          | 0.0496                                     | 0.0233                 | 0.0729          |
| Fugitive Exhaust PM10 PM10      | tons/yr  | 0.0000                                     | 0.0233                 | 0.0233          |
| Fugitive<br>PM10                | tor      | 0.0496                                     |                        | 0.0496          |
| S02                             |          |                                            | 5.8000e-<br>004        | 5.8000e-<br>004 |
| CO                              |          |                                            | 0.3235 5.8000e-<br>004 | 0.3235          |
| NOX                             |          |                                            | 0.4716                 | 0.0475 0.4716   |
| ROG                             |          |                                            | 0.0475                 | 0.0475          |
|                                 | Category | Fugitive Dust                              | Off-Road               | Total           |

Date: 1/6/2021 1:52 PM Page 11 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021 Unmitigated Construction Off-Site

| Programme and the second   |          |                                     |         | -                                                      |                 |
|----------------------------|----------|-------------------------------------|---------|--------------------------------------------------------|-----------------|
| CO2e                       |          | 17.4869                             | 0.0000  | 2.2267                                                 | 19.7136         |
| N2O                        |          | 0.0000                              | 0.0000  | 0.0000                                                 | 0.0000          |
| CH4                        | ι        |                                     | 0.0000  | 7.0000e-<br>005                                        | 1.2800e-<br>003 |
| Total CO2                  | MT/yr    | 17.4566                             | 0.000.0 | 2.2251                                                 | 19.6816         |
| Bio-CO2 NBio-CO2 Total CO2 |          | 17.4566 17.4566 1.2100e-            | 0.0000  | 2.2251                                                 | 19.6816         |
| Bio-C02                    |          | 0.0000                              | 0.000.0 | 0.0000                                                 | 0.0000          |
| PM2.5<br>Total             |          | 1.2600 <del>c</del><br>003          | 0.000.0 | 6.7000e-<br>004                                        | 1.9300e-<br>003 |
| Exhaust<br>PM2.5           |          | 1.8000e-<br>004                     | 0.0000  | 2.0000e-<br>005                                        | 2.0000e-<br>004 |
| Fugitive<br>PM2.5          |          | 1.0800e-<br>003                     | 0.000.0 | 6.5000e- 2.0<br>004                                    | 1.7300e-<br>003 |
| PM10<br>Total              |          | 1300e-<br>003                       | 0.0000  | 2.4900e<br>003                                         | 6,6200e-<br>003 |
| Exhaust<br>PM10            | s/yr     | 1.9000e-<br>004                     | 0.000.0 | e- 2.0000e-<br>005                                     | 2.1000e-<br>004 |
| Fugitive<br>PM10           | tons/yr  | 0.0148 1.8000e- 3.9400e-<br>004 003 | 0.000   | 2.4700                                                 | 6.4100e-<br>003 |
| S02                        |          | 1.8000e-<br>004                     | 0.000.0 | 9.7000e- 7.5000e- 8.5100e- 2.0000e-<br>004 004 003 005 | 2.0000e-<br>004 |
| cos co                     |          | 0.0148                              | 0.000.0 | 8.5100e-<br>003                                        | 0.0233          |
| NOX                        |          | 0.0634                              | 0.0000  | 7.5000e-<br>004                                        | 0.0641          |
| ROG                        |          | 1.9300e- 0.0634<br>003              | 0.0000  | 9.7000e-<br>004                                        | 2.9000e-<br>003 |
|                            | Category | Hauling                             | Vendor  | Worker                                                 | Total           |

## Mitigated Construction On-Site

| C02e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 0.000.0                                                  | 51.3600                       | 51.3600                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------|-------------------------------|-------------------------------|
| N20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.000.0                                                  | 0.0000 51.3600                | 0.0000 51.3600                |
| CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | МТУл     | 0.000.0                                                  | 0.0144                        | 0.0144                        |
| Total CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MT       | 0.000.0                                                  | 51.0011                       | 51.0011                       |
| NBio-CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 0.0000 0.0000 0.0000 0.0000 0.0000                       | 51.0011 51.0011 0.0144        | 0.0000 51.0011                |
| Bio-CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 0.000.0                                                  | 0.0000                        | 0.0000                        |
| PM10         Fugitive         Exhaust         PM2.5         Bio- CO2         NBio- CO2         Total         CH4         N2O           Total         PM2.5         Total         Total |          | 7.5100e-<br>003                                          | 0.0216                        | 0.0291                        |
| Exhaust<br>PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0.0496 0.0000 0.0496 7.5100e- 0.0000 7.5100e-<br>003 003 | 0.0216                        | 0.0216                        |
| Fugitive<br>PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 7.5100e-<br>003                                          | ,                             | 7.5100e-<br>003               |
| PM10<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0.0496                                                   | 0.0233                        | 0.0729                        |
| Exhaust<br>PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tons/yr  | 0.000.0                                                  | 0.0233                        | 0.0233 0.0729 7.5100e- 0.0216 |
| Fugitive<br>PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | noi      |                                                          |                               | 0.0496                        |
| S02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                          | 5.8000e-<br>004               | 5.8000e-<br>004               |
| င္၀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                          | 0.3235                        | 0.3235                        |
| ROG NOX CO SO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                          | 0.4716                        | 0.0475 0.4716 0.3235 5.8000e- |
| ROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                          | 0.0475 0.4716 0.3235 5.8000e- | 0.0475                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Category | Fugitive Dust                                            | Off-Road                      | Total                         |

Date: 1/6/2021 1:52 PM Page 12 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021

## Mitigated Construction Off-Site

| C02e                           |          | 17.4869                                                 | 0.0000  | 2.2267                                | 19.7136                |
|--------------------------------|----------|---------------------------------------------------------|---------|---------------------------------------|------------------------|
| OZN                            |          | 0.0000                                                  | 0.0000  | 0.0000                                | 0.0000                 |
| СНА                            | Mit/yr   | 1.2100e-<br>003                                         | 0.000.0 | 7.0000e-<br>005                       | 1.2800e-<br>003        |
| Total CO2                      | W        | 17.4566                                                 | 0.0000  | 2.2251                                | 19.6816                |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.0000 17.4566 17.4566 1.2100e-                         | 0.0000  | 2.2251                                | 19.6816                |
| Bio-CO2                        |          | 0.000.0                                                 | 0.0000  | 0.0000                                | 0000                   |
| PM2.5<br>Total                 |          | 1.2600e- C<br>003                                       | 0.0000  | 6.7000e-<br>004                       | 1.9300e- C             |
| Exhaust<br>PM2.5               |          | 1.8000e-<br>004                                         | 0.0000  | 2.0000e-<br>005                       | 000e-<br>004           |
| Fugitive<br>PM2.5              |          | 1.0800e-<br>003                                         | 0.000.0 | 6.5000e-<br>004                       | 1.7300<br>003          |
| PM10<br>Total                  |          | 930                                                     | 0.000.0 | 2.4900e-<br>003                       | 6.6200e-<br>003        |
| Exhaust<br>PM10                |          | 1.9000<br>004                                           | 0.0000  | 2.0000e-<br>005                       | e- 2.1000e-<br>004     |
| Fugitive<br>PM10               | tons/yr  | 3.9400e-<br>003                                         | 0.0000  | 2.4700                                | 6.4100<br>003          |
| S02                            |          | 1.8000e-<br>004                                         | 0.0000  | 2.0000e-<br>005                       | 2.0000e-<br>004        |
| 00                             |          | 0.0148                                                  | 0.000   | 8.5100e-<br>003                       | 0.0233 2.0000e-<br>004 |
| XON                            |          | 1.9300e- 0.0634 0.0148 1.8000e- 3.9400e-<br>003 004 003 | 0.000.0 | 9,7000e- 7,5000e- 8,5100e-<br>004 003 | 0.0641                 |
| ROG                            |          | 1.9300e-<br>003                                         | 0.0000  | 9.7000e-<br>004                       | 2.9000e-<br>003        |
|                                | Category | Hauling                                                 | Vendor  | Worker                                | Total                  |

### 3.3 Site Preparation - 2021

## **Unmitigated Construction On-Site**

| CO2e                                         |          | 0.000.0                                   | 33.7061                       | 33.7061                |
|----------------------------------------------|----------|-------------------------------------------|-------------------------------|------------------------|
| N2O                                          |          | 0.0000                                    | 0.0000                        | 0.0000                 |
| CH4                                          | ΛΤίλι    | 0,0000 0,0000                             | 0.0108                        | 0.0108                 |
| Total CO2                                    | MT       | 0.000.0                                   | 33.4357                       | 33.4357                |
| NBio- CO2                                    |          | 0.0000 0.0000                             | 33,4357 33,4357               | 33.4357                |
| Bio- CO2                                     |          | 0.000.0                                   | 0.0000                        | 0.000                  |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total |          | 0.0993                                    | 0.0188                        | 0.1181                 |
| Exhaust<br>PM2.5                             |          | 0.1807 0.0000 0.1807 0.0993 0.0000 0.0993 | 0.0188                        | 0.0188                 |
| Fugitive<br>PM2.5                            |          | 0.0993                                    |                               | 0.0993                 |
| PM10<br>Total                                |          | 0.1807                                    | 0.0204                        | 0.2011                 |
| Exhaus<br>PM10                               | síýr     | 0.0000                                    | 0.0204                        | 0.0204                 |
| Fugitive<br>PM10                             | tons/yr  |                                           |                               | 0.1807                 |
| S02                                          |          |                                           | 3.8000e-<br>004               | 3.8000e-<br>004        |
| ငဝ                                           |          |                                           | 0.2115                        | 0.2115                 |
| ROG NOX CO                                   |          |                                           | 0.0389 0.4050 0.2115 3.8000e- | 0.4050 0.2115 3.8000e- |
| ROG                                          |          |                                           | 0.0389                        | 0.0389                 |
|                                              | Category | Fugitive Dust                             | Off-Road                      | Total                  |

Date: 1/6/2021 1:52 PM Page 13 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.3 Site Preparation - 2021
Unmitigated Construction Off-Site

| C02e                           |          | 0.0000               | 0.0000  | 1.7814                                                 | 1.7814                                          |
|--------------------------------|----------|----------------------|---------|--------------------------------------------------------|-------------------------------------------------|
| NZO                            |          | 0.0000 0.0000        | 0.0000  | 0.0000                                                 | 0.000                                           |
| CH4                            | λ        | 0.0000               | 0.0000  | 5.0000e-<br>005                                        | 5.0000e-<br>005                                 |
| Total CO2                      | MT/yr    | 0.000.0              | 0.0000  | 1.7801                                                 | 1.7801                                          |
| NBio-CO2                       |          | 0.0000 0.0000 0.0000 | 0.000.0 | 1.7801                                                 | 1.7801                                          |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.000.0              | 0.0000  | 0.000.0                                                | 0.000.0                                         |
| PM2.5<br>Total                 |          | 0.0000               | 0.000.0 | 5.4000e-<br>004                                        | 5.4000e-<br>004                                 |
| Fugitive Exhaust PM2.5 PM2.5   |          | 0.0000 0.0000 0.0000 | 0.0000  | 1.0000e- 5.<br>005                                     | 1.0000e-<br>005                                 |
| Fugitive<br>PM2.5              |          | 0.0000               | 0.000.0 | 5.2000e-<br>004                                        | 5.2000e-<br>004                                 |
| PM10<br>Total                  |          | 0.000.0              | 0.000   | 1.9900<br>003                                          | 1.9900e-<br>003                                 |
| Exhaust<br>PM10                | tons/yr  | 0.0000               | 0.0000  | le- 2.0000e-<br>005                                    | 2.0000e-<br>005                                 |
| Fugitive<br>PM10               | ton      | 0.0000 0.0000        | 0.00    | 1.9700                                                 | 1.9700e-<br>003                                 |
|                                |          | 0.0000               | 0.000.0 | 2.0000e-<br>005                                        | 2.0000e-<br>005                                 |
| co soz                         |          | 0.0000               | 0.0000  | 6.8100 <del>e</del> -<br>003                           | 6.8100e-<br>003                                 |
| NOX                            |          | 0.0000 0.0000 0.0000 | 0.000.0 | 7.7000e- 6.0000e- 6.8100e- 2.0000e-<br>004 004 003 005 | 7.7000e- 6.0000e- 6.8100e- 2.0000e- 004 003 005 |
| ROG                            |          | 0.0000               | 0.0000  | 7.7000e-<br>004                                        | 7.7000e-<br>004                                 |
|                                | Category | Hauling              | Vendor  | Worker                                                 | Total                                           |

## Mitigated Construction On-Site

| CO2e                                       |          | 0.0000             | 33.7060                       | 33.7060                              |
|--------------------------------------------|----------|--------------------|-------------------------------|--------------------------------------|
| N2O CO2e                                   |          | 0.0000             | 0.0000                        | 0.0000                               |
| CH4                                        | Ŵ        | 0.0000             | 0.0108                        | 0.0108                               |
| Total CO2                                  | LM.      | 0.0000             | 33.4357                       | 33.4357                              |
| NBio-CO2                                   |          | 0.0000 0.0000      | 33.4357                       | 0.0000 33.4357                       |
| PMZ.5 Bio-CO2 NBio-CO2 Total CO2 CH4 Total |          | 0.0000             | 0.0000                        |                                      |
| PM2.5<br>Total                             |          | 0.0993             | 0.0188                        | 0.1181                               |
| Fugitive Exhaust<br>PM2.5 PM2.5            |          | 0.0000             | 0.0188                        | 0.0188                               |
| Fugitive<br>PM2.5                          |          | 0.0993             |                               | 0.0993                               |
| Exhaust PM10<br>PM10 Total                 |          | 0.1807             | 0.0204                        | 0.2011                               |
| Exhaust<br>PM10                            | tons/yr  | 1807 0.0000 0.1807 | 0.0204                        | 0.0204                               |
| Fugitive<br>PM10                           | pol      | 0.                 |                               | 0.1807                               |
| S02                                        |          |                    | 3.8000e-<br>004               | 3.8000e-<br>004                      |
| 8                                          |          |                    | 0.2115                        | 0.2115                               |
| ROG NOx                                    |          |                    | 0.0389 0.4050 0.2115 3.8000e- | 0.0389 0.4050 0.2115 3.8000e- 0.1807 |
| ROG                                        |          |                    | 0.0389                        | 0.0389                               |
|                                            | Category | Fugitive Dust      | Off-Road                      | Total                                |

Date: 1/6/2021 1:52 PM Page 14 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.3 Site Preparation - 2021
Mitigated Construction Off-Site

| .Ze                        |          | 000                  | 000     | 314                                                    | 314                                                |
|----------------------------|----------|----------------------|---------|--------------------------------------------------------|----------------------------------------------------|
| CO2e                       |          | 0.0000               | 0.0000  | 1.7814                                                 | 1.7814                                             |
| NZO                        |          | 0.0000               | 0.0000  | 0.0000                                                 | 0.0000                                             |
| OH<br>H                    | W        | 0.000.0              | 0.0000  | 5.0000e-<br>005                                        | 5.0000e-<br>005                                    |
| Total CO2                  | M        | 0.0000               | 0.0000  | 1.7801                                                 | 1.7801                                             |
| Bio-CO2 NBio-CO2 Total CO2 |          | 0.000.0              | 0.0000  | 1.7801                                                 | 1.7801                                             |
| Bio-CO2                    |          | 0.0000               | 0.0000  | 0.000                                                  | 0.000.0                                            |
| PM2.5<br>Total             |          | 0.0000               | 0.0000  | 5.4000e-<br>004                                        | 5.4000e-<br>004                                    |
| Exhaust<br>PM2.5           |          | 0.0000               | 0.000.0 | 1.0000e-<br>005                                        | 1.0000e-<br>005                                    |
| Fugitive<br>PM2.5          |          | 0.0000               | 0.000.0 | 5.2000e-<br>004                                        | 5.2000e-<br>004                                    |
| PM10<br>Total              |          | 0.000.0              | 0.000.0 | 1.9900e-<br>003                                        | 1.9900e-<br>003                                    |
| Exhaust<br>PM10            | tons/yr  | 0.0000               | 0.000.0 | 2.0000e-<br>005                                        | e- 2.0000e-<br>005                                 |
| Fugitive<br>PM10           | ton      | 0.0000               | 0.0000  | 1.9700e-<br>003                                        | 1.9700<br>003                                      |
| S02                        |          | 0.0000               | 0.000.0 | 2.0000e-<br>005                                        | 2.0000e-<br>005                                    |
| တ                          |          | 0.0000               | 0.0000  | 6.8100e-<br>003                                        | 6.8100e-<br>003                                    |
| ×ON                        |          | 0.0000 0.0000 0.0000 | 0.0000  | 7,7000e- 6.0000e- 6.8100e- 2.0000e-<br>004 004 003 005 | 7.7000e- 6.0000e- 6.8100e- 2.0000e-<br>004 004 005 |
| ROG                        |          | 0.0000               | 0.000   | 7.7000e-<br>004                                        | 7.7000e-<br>004                                    |
|                            | Category | Hauling              | Vendor  | Worker                                                 | Total                                              |

3.4 Grading - 2021

Unmitigated Construction On-Site

| C02e                            |          | 0.0000                    | 104.3776                        | 104.3776                        |
|---------------------------------|----------|---------------------------|---------------------------------|---------------------------------|
| N2O                             |          | 0.0000 0.0000 0.0000      | 0.0000 104.3776                 | 0.0000                          |
| CH4                             | ×        | 0.0000                    |                                 | 0.0335                          |
| Total CO2                       | MT/yr    | 00000                     | 103.5405                        | 103.5405                        |
| VBio-CO2                        |          | 0.000.0                   | 0.0000 103.5405 103.5405 0.0335 | 0.0000 103.5405 103.5405 0.0335 |
| Bio-CO2 NBio-CO2 Total CO2 CH4  |          | 0.000.0                   | 0.0000                          | 0.0000                          |
| PM2.5<br>Total                  |          | 0.0693                    | 0.0347                          | 0.1040                          |
| 4 14,1414                       |          | 0.000.0                   | 0.0347                          | 0.0347                          |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.0693                    |                                 | 0.0693                          |
| PM10<br>Total                   |          | 0.1741                    | 0.0377                          | 0.2118                          |
| Exhaust PM10<br>PM10 Total      | /уп      | 1741 0.0000 0.1741 0.0693 | 0.0377                          | 0.0377                          |
| Fugitive<br>PM10                | tons/yr  | 0.1741                    |                                 | 0.1741                          |
| .so2                            |          |                           | 1.1800e-<br>003                 | 1.1800e-<br>003                 |
| 03                              |          |                           | 0.5867                          | 0.5867                          |
| ROG NOx CO SO2                  |          |                           | 0.0796 0.8816                   | 0.8816 0.5867                   |
| ROG                             |          |                           | 0.0796                          | 0.0796                          |
|                                 | Category | Fugitive Dust             | Off-Road                        | Total                           |

CalEEMod Version: CalEEMod.2016.3.2

Page 15 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual **Unmitigated Construction Off-Site** 3.4 Grading - 2021

| man to a                                     | Exiting the second | _                           |         | ,                              |                              |
|----------------------------------------------|--------------------|-----------------------------|---------|--------------------------------|------------------------------|
| C02e                                         |                    | 0.000                       | 0.0000  | 3.7607                         | 3.7607                       |
| NZO                                          |                    | 0.000.0                     | 0.000.0 | 0.0000                         | 0.000                        |
| CH4                                          | УI                 | 0.000                       | 0.0000  | 1.1000 <del>e</del> -<br>004   | 1.1000e-<br>004              |
| Total CO2                                    | MT/yr              | 0.000.0                     | 0.0000  | 3.7579                         | 3.7579                       |
| NBio- CO2                                    |                    | 0.0000 0.0000               | 0.000.0 | 3.7579                         | 3.7579                       |
| Bio- CO2                                     |                    | 0.0000                      | 0.000.0 | 0.0000                         | 0.0000                       |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total |                    |                             | 00000   | 1.1400e-<br>003                | 1.1400e-<br>003              |
| Exhaust<br>PM2.5                             |                    | 0.0000 0.0000 0.0000 0.0000 | 0.000.0 | 3.0000e-<br>005                | 3.0000e-<br>005              |
| Fugitive<br>PM2.5                            |                    | 0.0000                      | 0.000.0 | 1100e-<br>003                  | 1.1100e-<br>003              |
| PM10<br>Total                                |                    | 0.0000                      | 0.000.0 | 2000e-<br>003                  | 4.2000e-<br>003              |
| Exhaust<br>PM10                              | síyr               | 0.0000                      | 0.0000  | 3.0000e- 4.7<br>005            | 3.0000e- 4<br>005            |
| Fugitive<br>PM10                             | tons/yr            | 0.0000                      | 0.000.0 | 4.1600e-<br>003                | 4.1600e-<br>003              |
| SO2                                          |                    | 0.0000                      | 0.000   | 4 4.0000e- 4<br>005            | 4 4.0000e-<br>005            |
| 8                                            |                    | 0.0000                      | 000.    | 0.014                          | 0.014                        |
| ROG NOx CO SO2                               |                    | 0.0000 0.0000 0.0000        | 0.0000  | 1.6400e- 1.2700e- (<br>003 003 | 1.6400e- 1.2700e-<br>003 003 |
| ROG                                          |                    | 0.0000                      | 0.0000  | 1.6400 <del>c-</del><br>003    | 1.6400e-<br>003              |
|                                              | Category           | Hauling                     | Vendor  | Worker                         | Total                        |

(

## Mitigated Construction On-Site

|                                                   |          | _                                          |                                                 |                                 |
|---------------------------------------------------|----------|--------------------------------------------|-------------------------------------------------|---------------------------------|
| e205                                              |          | 0.0000                                     | 104.3775                                        | 104.3775                        |
| N20                                               |          | 0.0000                                     | 0.0000                                          | 0.0000 104.3775                 |
| 0.<br>44                                          | ý        | 0.0000                                     | 0.0335                                          | 0.0335                          |
| Total CO2                                         | MITA     | 0.000.0                                    | 103.5403                                        | 103.5403                        |
| Bio-CO2   NBio-CO2   Total CO2   CH4   N2O   CO2e |          | 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 | 0.0000 103.5403 103.5403 0.0335 0.0000 104.3775 | 103.5403                        |
| Bio- CO2                                          |          | 0.000.0                                    | 0.000.0                                         | 0.0000                          |
| it PM2.5<br>5 Total                               |          | 0.0693                                     | 0.0347                                          | 0.1040 0.0000 103.5403 103.5403 |
| Fugitive Exhaust<br>PM2.5 PM2.5                   |          | 0.000.0                                    | 0.0347                                          |                                 |
| Fugitive<br>PM2.5                                 |          | 0.0693                                     |                                                 | 0.0377 0.2118 0.0693 0.0347     |
| PM10<br>Total                                     |          | 0.1741                                     | 0.0377                                          | 0.2118                          |
| Fugitive Exhaust<br>PM10 PM10                     | s/yr     | 0.1741 0.0000                              | 0.0377                                          | 0.0377                          |
| Fugitive<br>PM10                                  | tons/yr  | 0.1741                                     |                                                 | 0.1741                          |
| <b>S</b> 02                                       |          |                                            | 1.1800e-<br>003                                 | 1.1800e-<br>003                 |
| ငဝ                                                |          |                                            | 0.5867                                          | 0.5867                          |
| ROG NOx CO                                        |          |                                            | 0.0796 0.8816 0.5867                            | 0.0796 0.8816 0.5867 1.1800e-   |
| ROG                                               |          |                                            | 0.0796                                          | 0.0796                          |
|                                                   | Category | Fugitive Dust                              | Off-Road                                        | Total                           |

Page 16 of 44 CalEEMod Version: CalEEMod.2016.3.2

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2021
Mitigated Construction Off-Site

| CO2e                       |          | 0.000.0              | 0.0000  | 3.7607                      | 3.7607                       |
|----------------------------|----------|----------------------|---------|-----------------------------|------------------------------|
| N2O                        |          | 0.0000               | 0.0000  | 0.0000                      | 0.0000                       |
| СНД                        | ъ́у      | 0.000.0              | 0.000.0 | 1.1000 <del>e-</del><br>004 | 1.1000e- 0<br>004            |
| Total CO2                  | IW.      | 0.0000               | 0.000.0 | 3.7579                      | 3.7579                       |
| Bio-CO2 NBio-CO2 Total CO2 |          | 0.0000               | 0.0000  | 3.7579                      | 3.7579                       |
| Bio- CO2                   |          | 0.0000               | 0.0000  | 0.0000                      | 0.0000                       |
| PM2.5<br>Total             |          | 0.0000               | 0.000.0 | 1.1400 <del>c-</del><br>003 | . 1.1400e-<br>003            |
| Exhaust<br>PM2.5           |          | 0.000.0              | 0.0000  | 3.0000e-<br>005             | 000e-                        |
| Fugitive<br>PM2.5          |          | 0.0000               | 0.000.0 | 1.1100e-<br>003             | 1.1100e- 3.0                 |
| PM10<br>Total              |          | 0.0000               | 0.000.0 | 4.2000e-<br>003             | 4.2000e-<br>003              |
| Exhaust<br>PM10            | síyir    | 0.0000               | 0.0000  | 3.0000e-<br>005             | 3.0000<br>005                |
| Fugitive<br>PM10           | tons/yr  | 0.0000               | 0.0000  | 4.1600e-<br>003             | 4.1600e-<br>003              |
| co soz                     |          | 0.0000               | 0.0000  | 14 4.0000e- 4<br>005        | 0.0144 4.0000e-              |
| တ                          |          | 0.0000               | 0.00    | 0.01                        | 0.0144                       |
| ×ON                        |          | 0.0000 0.0000 0.0000 | 0.0000  | .6400e- 1.2700e-<br>003 003 | 1.6400e- 1.2700e-<br>003 003 |
| ROG                        |          | 0.0000               | 0.0000  | 1.6400e-<br>003             | 1.6400e-<br>003              |
|                            | Category | Hauling              | Vendor  | Worker                      | Total                        |

3.4 Grading - 2022

## Unmitigated Construction On-Site

| CO2e                                                                                                                                                                                                       |          | 0.0000        | 19.2414                       | 19.2414                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|-------------------------------|--------------------------------------|
| N20                                                                                                                                                                                                        |          | 0.0000        | 0.0000                        | 0.0000                               |
| СН4                                                                                                                                                                                                        | ý        | 0.000.0       | 6.1700e-<br>003               | 6.1700e-<br>003                      |
| Total CO2                                                                                                                                                                                                  | M        | 0.000.0       | 19.0871                       | 19.0871                              |
| NBio-CO2                                                                                                                                                                                                   |          | 0.000.0       | 19.0871 19.0871 6.1700e-      | 19.0871 19.0871 6.1700e-             |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e                                                                                                                                                                    |          | 0.0000        | 00000                         | 0.0000                               |
| PM2.5<br>Total                                                                                                                                                                                             |          | 0.0180        | 5.2600e- (<br>003             | 0.0233                               |
| Exhaust<br>PM2.5                                                                                                                                                                                           |          | 0.000.0       | 5.2600e-<br>003               | 5.2600e-<br>003                      |
| Fugitive<br>PM2.5                                                                                                                                                                                          |          |               | <br>                          | 0.0180                               |
| PM10<br>Total                                                                                                                                                                                              |          | 0.0807 0.0180 | 5.7200e-<br>003               | 0.0865                               |
| Exhaust<br>PM10                                                                                                                                                                                            | siyr     | 0.000.0       | 5.7200e-<br>003               | 5.7200e-<br>003                      |
| Fugitive<br>PM10                                                                                                                                                                                           | tons/yr  | 0.0807        |                               | 0.0807                               |
| S02.                                                                                                                                                                                                       |          |               | 2.2000e-<br>004               | 2.2000e-<br>004                      |
| ဝ၁                                                                                                                                                                                                         |          |               | 0.1017                        | 0.1017                               |
| ROG         NOx         CO         SO2         Fugitive         Exhaust         PM10         Fugitive         Exhaust         PM2.5           PM10         Total         PM2.5         PM2.5         Total |          |               | 0.1360                        | 0.0127 0.1360 0.1017 2.2000e- 0.0807 |
| ROG                                                                                                                                                                                                        |          |               | 0.0127 0.1360 0.1017 2.2000e- | 0.0127                               |
|                                                                                                                                                                                                            | Category | Fugitive Dust | Off-Road                      | Total                                |

3.2 Page 17 of 44 Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

3.4 Grading - 2022 Unmitigated Construction Off-Site

|                            | E control of the control |                             |               |                                                        |                                    |
|----------------------------|--------------------------|-----------------------------|---------------|--------------------------------------------------------|------------------------------------|
| CO2e                       |                          | 0.0000                      | 0.0000        | 0.6684                                                 | 0.6684                             |
| NZO                        |                          | 0.0000                      | 0.0000        | 0.0000                                                 | 0.0000                             |
| 9.<br>4.                   | \$                       |                             | 0.0000        | 2.0000e- (<br>005                                      | 2.0000e- 0<br>005                  |
| Total CO2                  | n/i/m                    | 0.000.0                     | 0.0000        | 0.6679                                                 | 0.6679                             |
| NBio-CO2                   |                          | 0.0000 0.0000 0.0000 0.0000 | 0.0000        | 0.6679                                                 | 0.6679                             |
| Bio-CO2 NBio-CO2 Total CO2 |                          | 0.0000                      | 0.0000        | 0.000.0                                                | 0.0000                             |
| PM2.5<br>Total             |                          | 0.000.0                     | 0.0000        | 2.1000e-<br>004                                        | 2.1000e-<br>004                    |
| Exhaust<br>PM2.5           |                          | 0.000.0                     | 0.000.0       | 1.0000e- 2.<br>005                                     | 1.0000e-<br>005                    |
| Fugitive Exhaust PM2.5     |                          | 0.000 0.0000                | 0.000         | 2.0000e-<br>004                                        | 2.0000e-<br>004                    |
| PM10<br>Total              |                          | 0.0000                      | 0.0000        | e- 7.7000e-<br>004                                     | 7.7000e-<br>004                    |
| Exhaust<br>PM10            | síyir                    | 0.0000                      | 0.000         | 1.0000<br>005                                          | 1.0000e-<br>005                    |
| Fugitive<br>PM10           | tons/yr                  | 0.0000                      | 0.0000        | )e- 7.7000e-<br>004                                    | 7.7000e-<br>004                    |
| 100                        |                          | 0.0000                      | 0.0000        | 1.0000e-<br>005                                        | 1.0000e-<br>005                    |
| လ                          |                          | 0.0000                      | 0.0000 0.0000 | 2.4400e-<br>003                                        | 2.4400e-<br>003                    |
| ROG NOX CO SO2             |                          | 0.0000 0.0000 0.0000        | 0.0000        | 2.8000e- 2.1000e- 2.4400e- 1.0000e-<br>004 004 003 005 | 2.8000e- 2.1000e- 2.4400e- 004 003 |
| ROG                        |                          | 0.0000                      | 0.0000        | 2.8000e-<br>004                                        | 2.8000e-<br>004                    |
|                            | Category                 | Hauling                     | Vendor        | Worker                                                 | Total                              |

### Mitigated Construction On-Site

|                                             |          |                                           | ·                               |                                 |
|---------------------------------------------|----------|-------------------------------------------|---------------------------------|---------------------------------|
| C02e                                        |          | 0.0000                                    | 19.2414                         | 19.2414                         |
| NZO                                         |          | 0.0000                                    | 0.0000 19.2414                  | 0.0000                          |
| CH4                                         | мтуя     | 0.0000                                    | 6.1700e-<br>003                 | 6.1700e-<br>003                 |
| Total CO2                                   | TM.      | 0.0000                                    | 19.0871                         | 19.0871                         |
| NBio-CO2                                    |          | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 19.0871 19.0871 6.1700e- | 0.0000 19.0871 19.0871 6.1700e- |
| Bio- CO2   NBio- CO2   Total CO2   CH4      |          | 0.0000                                    | 0.0000                          | 0.0000                          |
| PM2.5<br>Total                              |          | 0.0180                                    | 5.2600e-<br>003                 | 0.0233                          |
| Exhaust<br>PM2.5                            |          |                                           | 5.2600e- 5.2600e-<br>003 003    | 0 5.2600e-<br>003               |
| Fugitive<br>PM2.5                           |          | 0.0180                                    |                                 | 0.0180                          |
| PM10<br>Total                               |          | 0.0807                                    | 5.7200e-<br>003                 | 0.0865                          |
| CO SO2 Fugitive Exhaust PM10 Fugitive PM2.5 | s/yr     | 0.0000                                    | 5.7200e- 5.7200e-<br>003 003    | 5.7200e- 0<br>003               |
| Fugitive<br>PM10                            | tons/y   | 0.0807                                    |                                 | 0.0807                          |
| S02                                         |          |                                           | 2.2000e-<br>004                 | 2.2000e-<br>004                 |
| ဗ                                           |          |                                           | 0.1017                          | 0.1017                          |
| ROG NOX                                     |          |                                           | 0.1360 0.1017 2.2000e-          | 0.1360 0.1017 2.2000e-          |
| ROG                                         |          |                                           | 0.0127                          | 0.0127                          |
|                                             | Category | Fugitive Dust                             | Off-Road                        | Total                           |
|                                             |          |                                           |                                 | L                               |

Page 18 of 44 CalEEMod Version: CalEEMod.2016.3.2

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2022

Mitigated Construction Off-Site

|                                  | _        |                      |         |                                           |                                       |
|----------------------------------|----------|----------------------|---------|-------------------------------------------|---------------------------------------|
| CO2e                             |          | 0.0000               | 0.0000  | 0.6684                                    | 0.6684                                |
| NZO                              |          | 0.0000               | 0.0000  | 0.0000                                    | 0.000                                 |
|                                  | МП/уг    | 0.000.0              | 0.0000  | 2.0000e- 0<br>005                         | 2.0000e-<br>005                       |
| Total CO2                        | LΜ       | 0.0000               | 0.0000  | 0.6679                                    | 0.6679                                |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.0000 0.0000        | 0.0000  | 0.6679                                    | 0.6679                                |
| Bio-CO2                          |          | 0.0000               | 0.000.0 | 0.0000                                    | 0000'0                                |
| st PM2.5<br>Total                |          | 0.0000               | 0.0000  | 2.1000e-<br>004                           | 2.1000e-<br>004                       |
| Exhaus<br>PM2.6                  |          | 0.0000 0.0000 0.0000 | 0000    | 0000 <del>e-</del><br>005                 | 1.0000e-<br>005                       |
| Fugitive<br>PM2.5                |          | 0.0000               | 0.0000  | 2.0000e-<br>004                           | 2.0000e-<br>004                       |
| PM10<br>Total                    |          | 0.0000               | 0.0000  | )e- 7.7000e-<br>004                       | 7.7000e-<br>004                       |
| Exhaust<br>PM:10                 | tons/yr  | 0.000.0              | 0.0000  | 1.0000e-<br>005                           | 1.0000e-<br>005                       |
| Fugitive<br>PM10                 | ton      | 0.000.0              | 0.0000  | 7.7000e-<br>004                           | 7.7000e-<br>004                       |
| s02                              |          | 0.0000               | 0.0000  | e- 1.0000e-<br>005                        | 1.0000e- 7.7                          |
| NOx CO                           |          | 0.0000               | 0.0000  | 2.4400e-<br>003                           | 2.4400e-<br>003                       |
| XON                              |          | 0.0000 0.0000        | 0.0000  | 2.8000e- 2.1000e- 2.4400e-<br>004 004 003 | 2.8000e- 2.1000e- 2.4400e-<br>004 003 |
| ROG                              |          | 0.000.0              | 0.0000  | 2.8000e-<br>004                           | 2.8000e-<br>004                       |
|                                  | Category | Hauling              | Vendor  | Worker                                    | Total                                 |

## 3.5 Building Construction - 2022

## **Unmitigated Construction On-Site**

| C02e                                                                                                                                                      |           | 294.8881                                        | 294.8881                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|--------------------------------------|
| N2O                                                                                                                                                       |           | 0.0000 293.1324 293.1324 0.0702 0.0000 294.8881 | 0.0000 294.8881                      |
| CH4                                                                                                                                                       | ĵ.        | 0.0702                                          | 0.0702                               |
| Total CO2                                                                                                                                                 | EW.       | 293.1324                                        | 293.1324                             |
| NBio-CO2                                                                                                                                                  |           | 293.1324                                        | 0.0000 293.1324 293.1324 0.0702      |
| Bio- CO2                                                                                                                                                  |           | 0.000.0                                         | 0.000.0                              |
| PM10         Fugitive PM2.5         Exhaust PM2.5         PM2.5         Bio- CO2         NBio- CO2         Total CO2         CH4         N2O         CO2e |           | 0.0963 0.0963                                   | 0.0963                               |
| Exhaust<br>PM2.5                                                                                                                                          |           | 0.0963                                          | 0.0963                               |
| Fugitive<br>PM2.5                                                                                                                                         |           |                                                 |                                      |
| PM10<br>Total                                                                                                                                             |           | 0.1023                                          | 0.1023                               |
| Fugitive Exhaust<br>PM10 PM10                                                                                                                             | sívyr     | 0.1023 0.1023                                   | 0.1023                               |
| Fugitive<br>PM10                                                                                                                                          | tons/yr   |                                                 |                                      |
| S02                                                                                                                                                       |           | 3.4100e-<br>003                                 | 3.4100e-<br>003                      |
| တ                                                                                                                                                         |           | 2.0700                                          | 2.0700                               |
| ×on                                                                                                                                                       |           | 1.9754 2.0700 3.4100e-<br>003                   | 0.2158 1.9754 2.0700 3.4100e-<br>003 |
| ROG                                                                                                                                                       |           | 0.2158                                          | 0.2158                               |
|                                                                                                                                                           | Sategory. | Off-Road                                        | <b>Total</b>                         |
|                                                                                                                                                           | රී        | P                                               |                                      |

Date: 1/6/2021 1:52 PM Page 19 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2022
Unmitigated Construction Off-Site

| C02e                             |          | 0.0000                             | 442.6435                    | 967.4773          | 1,410.120<br>8                    |
|----------------------------------|----------|------------------------------------|-----------------------------|-------------------|-----------------------------------|
| N20                              |          | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000                      | 0.0000            | 0.0000 1,410.120<br>8             |
|                                  | ış,      | 0.000.0                            | 0.0264                      | 0.0266            | 0.0530                            |
| Total CO2                        | MTisyr   | 0.0000                             | 441.9835                    | 966.8117 966.8117 | 1,408.795<br>2                    |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.0000                             | 441.9835   441.9835         | 966.8117          | 0.0000 1,408,795 1,408,795<br>2 2 |
| Bio-CO2                          |          | 0.0000                             | 0.0000                      | 0.0000            | 0.000                             |
| PM2.5<br>Total                   |          | 0.0000                             | 0.0359                      | 0.3031            | 0.3390                            |
| Fugitive Exhaust PM2.5 PM2.5     |          | 0.0000 0.0000 0.0000 0.0000 0.0000 | 3.0400 <del>c.</del><br>003 | 8.1700e-<br>003   | 0.0112                            |
| Fugitive<br>PM2.5                |          | 0.0000                             | 0.0329                      | 0.2949            | 0.3278                            |
| PM10<br>Total                    |          | 0.0000                             | 0.1171                      | 1.1192            | 1.2363                            |
| Exhaust<br>PM10                  | s/yr     | 0.0000                             | 3.1800 <del>e-</del><br>003 | 8.8700e-<br>003   | 0.0121                            |
| Fugitive Exhaust<br>PM10 PM10    | tons/yr  | 0.0000                             | 1140                        | 1.1103            | 1.2243                            |
| N0x C0 S02                       |          | 0.0000                             | 4.5500e- 0<br>003           | 0.0107            | 0.0152                            |
| 00                               |          | 0.0000                             | 0.4580                      | 3.5305            | 3.9885                            |
| NOx                              |          | 0.0000 0.0000 0.0000               | 1.6961                      | 0.3066            | 0.4616 2.0027                     |
| ROG                              |          | 0.0000                             | 0.0527                      | 0.4088            | 0.4616                            |
|                                  | Category | Hauling                            | Vendor                      | Worker            | Total                             |

### Mitigated Construction On-Site

| CO2e                                                 |          | 294.8877                                        | 294.8877                        |
|------------------------------------------------------|----------|-------------------------------------------------|---------------------------------|
| N2O CO2e                                             |          | 0.0000                                          | 0.0000 294.8877                 |
| CH4                                                  | /yr      | 0.0702                                          | 0.0702                          |
| Total CO2                                            | LW.      | 293.1321                                        | 293.1321                        |
| NBio-CO2                                             |          | 0.0000 293.1321 293.1321 0.0702 0.0000 294.8877 | 0.0000 293.1321 293.1321 0.0702 |
| Bio-CO2 NBio-CO2 Total CO2 CH4                       |          | 0.000.0                                         | 0.0000                          |
| t PM2.5<br>Total                                     |          | 0.0963                                          | 0.0963                          |
| Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |          | 0.0963                                          | 0.0963                          |
| Fugitive<br>PM2.5                                    |          |                                                 |                                 |
| PM10<br>Total                                        |          | 0.1023                                          | 0.1023                          |
| Exhaust<br>PM10                                      | síyr     | 0.1023 0.1023                                   | 0.1023                          |
| Fugitive<br>PM10                                     | tons/yr  |                                                 |                                 |
| S02                                                  |          | 3.4100e-<br>003                                 | 3.4100e-<br>003                 |
| င္၀                                                  |          | 2.0700 3.4100e-<br>003                          | 2.0700                          |
| NOX                                                  |          | 1.9754                                          | 1.9754                          |
| RoG                                                  |          | 0.2158                                          | 0.2158                          |
|                                                      | Category | Off-Road                                        | Total                           |
|                                                      |          |                                                 |                                 |

(

Page 20 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

3.5 Building Construction - 2022
Mitigated Construction Off-Site

| C02e                         |          | 0.0000                      | 442.6435           | 967.4773        | 0.0000 1,410.120<br>8             |
|------------------------------|----------|-----------------------------|--------------------|-----------------|-----------------------------------|
| N2O                          |          | 0.0000                      | 0.0000             | 0.0000          | 0.0000                            |
| СН4                          | ýr       | 0.000.0                     | 0.0264             | 0.0266          | 0.0530                            |
| Total CO2                    | MT/yr    | 0.000.0                     | 441.9835           | 966.8117        | 1,408.795<br>2                    |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000 0.0000 0.0000 0.0000 | 441.9835 441.9835  | 966.8117        | 0.0000 1,408,795 1,408,795<br>2 2 |
| Bio- CO2                     |          | 0.0000                      | 0.0000             | 0.0000          | 0.000.0                           |
| PM2.5<br>Total               |          | 0.000.0                     | 0.0359             | 0.3031          | 0.3390                            |
| Exhaust<br>PM2.5             |          | 0.0000 0.0000 0.0000 0.0000 | 3.0400e-<br>003    | 8.1700e-<br>003 | 0.0112                            |
| Fugitive<br>PM2.5            |          | 0.0000                      | 0.0329             | 0.2949          | 0.3278                            |
| PM10<br>Total                |          | 0.0000                      | 0.1171             | 1.1192          | 1.2363                            |
| Exhaust<br>PM10              | tons/yr  | 0.0000                      | 3.1800e-<br>003    | 8.8700e-<br>003 | 0.0121                            |
| Fugitive<br>PM10             | (Ou      | 0.0000                      | 0.1140             | 1.1103          | 1.2243                            |
| s02                          |          | 0.000.0                     | 4.5500e- 0.<br>003 | 0.0107          | 0.0152                            |
| တ                            |          | 0.0000                      | 0.4580             | 3.5305          | 3.9885                            |
| ROG NOx                      |          | 0.0000 0.0000 0.0000 0.0000 | 1.6961             | 0.3066          | 0.4616 2.0027                     |
| ROG                          |          | 0.0000                      | 0.0527             | 0.4088          | 0.4616                            |
|                              | Category | Hauling                     | Vendor             | Worker          | Total                             |

## 3.5 Building Construction - 2023

## **Unmitigated Construction On-Site**

| C02e                                    |            | 287.9814                                        | 287.9814                        |
|-----------------------------------------|------------|-------------------------------------------------|---------------------------------|
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e |            | 0.0000 286.2789 286.2789 0.0681 0.0000 287.9814 | 0.0000 287.9814                 |
| CH4                                     | JA,        | 0.0681                                          |                                 |
| Total CO2                               | <u>I</u> W | 286.2789                                        | 286.2789                        |
| NBio-CO2                                |            | 286.2789                                        | 0.0000 286.2789 286.2789 0.0681 |
| Bio-CO2                                 |            |                                                 | 0.0000                          |
| t PM2.5<br>Total                        |            | 0.0813 0.0813                                   | 0.0813                          |
| Exhaus<br>PM2.5                         |            | 0.0813                                          | 0.0813                          |
| itive Exhaust PM10 Fugitive             |            |                                                 |                                 |
| PM10<br>Total                           |            | 0.0864                                          | 0.0864                          |
| Exhaust<br>PM10                         | tons/yr    | 0.0864                                          | 0.0864                          |
| Fugitive<br>PM10                        |            |                                                 |                                 |
| SO2                                     |            | 3.3300e-<br>003                                 | 3.3300e-<br>003                 |
| 83                                      |            | 2.0061                                          | 1.7765 2.0061                   |
| ROG NOX                                 |            | 0.1942 1.7765 2.0061 3.3300e-                   |                                 |
| ROG                                     |            | 0.1942                                          | 0.1942                          |
|                                         | Category   | Off-Road                                        | Total                           |

Date: 1/6/2021 1:52 PM Page 21 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2023
Unmitigated Construction Off-Site

| Types                                  | i ga en de |                                    |                               |                              | I <del>-</del>                    |
|----------------------------------------|------------|------------------------------------|-------------------------------|------------------------------|-----------------------------------|
| N20 C02e                               |            | 0.0000                             | 418.5624                      | 909.9291                     | 1,328.491<br>6                    |
| NZO                                    |            | 0.000.0                            | 0.0000                        | 0.0000                       | 0.000                             |
| CH4                                    | ¥          | 0.000.0                            | 0.0228                        | 0.0234                       | 0.0462                            |
| Total CO2                              | MT/yr      | 0.000.0                            | 417.9930                      | 909.3439                     | 1,327.336<br>9                    |
| PMZ.5 Bio-CO2 NBio-CO2 Total CO2 Total |            | 0.0000 0.0000 0.0000               | 417.9930 - 417.9930           | 909.3439 909.3439            | 0.0000 1,327.336 1,327.336<br>9 9 |
| Bio- CO2                               |            | 0.0000                             | 0.0000                        | 0.0000                       | 00000                             |
| PM2.5<br>Total                         |            | 0.0000                             | 0.0335                        | 0.2957                       | 0.3292                            |
| Exhaust<br>PM2.5                       |            | 0.0000 0.0000 0.0000 0.0000 0.0000 | 1.4000e-<br>003               | 7.7400e-<br>003              | 0.3200 9.1400e-<br>003            |
| Fugitive<br>PM2.5                      |            | 0.0000                             | 0.0321                        | 0.2879                       | 0.3200                            |
| PM10<br>Total                          |            | 0.000.0                            | 0.1127                        | 1.0924                       | 1.2051                            |
| Exhaust<br>PM10                        | tons/yr    | 0.0000                             | 1.4600e-<br>003               | 8.4100 <del>e</del> -<br>003 | 9.8700e-<br>003                   |
| Fugitive<br>PM10                       | lon        | _                                  | 0.1113                        | 1.0840                       | 1.1953                            |
| SO2                                    |            | 0.0000                             | 4.3000e-<br>003               | 0.0101                       | 0.0144                            |
| 8                                      |            | 0.0000                             | 0.4011                        | 3.1696                       | 3.5707                            |
| NO× CO SO2                             |            | 0.0000 0.0000 0.0000               | 1.2511 0.4011 4.3000e-<br>003 | 0.2708                       | 0.4135 1.5218                     |
| ROG                                    |            | 0.0000                             | 0.0382                        | 0.3753                       | 0.4135                            |
|                                        | Category   | Hauling                            | Vendor                        | Worker                       | Total                             |

### Mitigated Construction On-Site

| 8               | ) I                           |               | S02 | ugitive Ey | chaust<br>9M10 | PM 10<br>Total | Fugitive Exhaust PM2.5 PM2.5 | Exhaust<br>PM2.5 |               | Bio- CO2 | NBio-CO2 | PM2.5 Bio- CO2   NBio- CO2   Total CO2   CH4   N2O   CO2e   Total   MT/yr | СНА    | NZO             | CO26     |
|-----------------|-------------------------------|---------------|-----|------------|----------------|----------------|------------------------------|------------------|---------------|----------|----------|---------------------------------------------------------------------------|--------|-----------------|----------|
| 3.3300e-<br>003 | 0.1942 1.7765 2.0061 3.3300e- | 3300e-<br>003 | l   |            | 0.0864 0.0864  | 0.0864         |                              | 0.0813           | 0.0813 0.0813 | 0.0000   | 286.2785 | 0.0000 286.2785 286.2785 0.0681 0.0000 287.9811                           | 0.0681 | 0.0000          | 287.9811 |
| 3.3300e-<br>003 | 1.7765 2.0061 3.3300e-        | 3300e-<br>003 |     |            | 0.0864         | 0.0864         |                              | 0.0813           | 0.0813        | 0.0000   | 286.2785 | 0.0000 286.2785 286.2785 0.0681                                           | 0.0681 | 0.0000 287.9811 | 287.9811 |

Date: 1/6/2021 1:52 PM Page 22 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2023

### Mitigated Construction Off-Site

| o.                           |          | 0                           | 54                | 9                 | <u> </u>                        |
|------------------------------|----------|-----------------------------|-------------------|-------------------|---------------------------------|
| CO2e                         |          | 0.0000                      | 418.5624          | 909.9291          | 1,328.491<br>6                  |
| N2O                          |          | 0.0000                      | 0.0000            | 0.0000            | 0.000                           |
| CH4                          | МТУг     | 0.0000                      | 0.0228            | 0.0234            | 0.0462                          |
| Total CO2                    | IM)      | 0.0000                      | 417.9930          | 909.3439 909.3439 | 1,327.336<br>9                  |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000 0.0000 0.0000 0.0000 | 417.9930 417.9930 | 909.3439          | 0.0000 1,327.336 1,327.336<br>9 |
|                              |          | 0.0000                      | 0.0000            | 0.0000            | 0.0000                          |
| PM2.5<br>Total               |          | 0.0000                      | 0.0335            | 0.2957            | 0.3292                          |
| Exhaust<br>PM2.5             |          | 0.000 0.0000 0.0000         | 1.4000e-<br>003   | 7.7400e-<br>003   | 0.3200 9.1400e-<br>003          |
| Fugitive<br>PM2.5            |          | 0.0000                      | 0.0321            | 0.2879            | 0.3200                          |
| PM10<br>Total                |          | 0.0000                      | 0.1127            | 1.0924            | 1.2051                          |
| Exhaust<br>PM10              | tons/yr  | 0.0000 0.0000.0             | 1.4600e-<br>003   | 8.4100e-<br>003   | 9.8700e-<br>003                 |
| Fugitive<br>PM10             | (On      |                             | 0.1113            | 1.0840            | 1.1953                          |
| <b>20</b> 2                  |          | 0.0000                      | 4.3000e-<br>003   | 0.0101            | 0.0144                          |
| ဝ၁                           |          | 0.0000                      | 0.4011            | 3.1696            | 3.5707                          |
| XON.                         |          | 0.0000 0.0000 0.0000        | 1.2511            | 0.2708            | 1.5218                          |
| ROG                          |          | 0.000.0                     | 0.0382            | 0.3753            | 0.4135                          |
|                              | Category | Hauling                     | Vendor            | Worker            | Total                           |

### 3.6 Paving - 2023

## Unmitigated Construction On-Site

|                                        | i Me     | <u>,</u>                                   | ; .     | ۲.                     |
|----------------------------------------|----------|--------------------------------------------|---------|------------------------|
| COZe                                   |          | 13.1227                                    | 0.0000  | 13.1227                |
| N2O                                    |          | 0.0000                                     | 0.0000  | 0.000                  |
| CH4                                    | MT/yr    | 0.0000 13.0175 13.0175 4.2100e- 0.0000     | 0.000.0 | 4.2100e-<br>003        |
| Total CO2                              | M        | 13.0175                                    | 0.0000  | 13.0175                |
| Bio- CO2   NBio- CO2   Total CO2   CH4 |          | 13.0175                                    | 0.000.0 | 13.0175                |
| Bio- CO2                               |          | 0.000                                      | 0.0000  | 0.000                  |
| PM2.5<br>Total                         |          | 3.0500e- 3.0500e-<br>003 003               | 0.0000  | 3.0500e-<br>003        |
| Exhaust<br>PM2.5                       |          | 3.0500 <del>e</del><br>003                 | 0.0000  | 3.0500e-<br>003        |
| Fugitive<br>PM2.5                      |          |                                            |         |                        |
| PM10<br>Total                          |          | 3.3200e- 3.3200e-<br>003 003               | 0.0000  | 3.3200e-<br>003        |
| Exhaust<br>PM10                        | tons/yr  | 3.3200e-<br>003                            | 0.0000  | 3.3200e-<br>003        |
| Fugitive<br>PM10                       | lo       |                                            |         |                        |
| S02                                    |          | 1.5000e-<br>004                            |         | 1.5000e-<br>004        |
| 00                                     |          | 0.0948                                     |         | 0.0948                 |
| NO <sub>X</sub>                        |          | 0.0663                                     |         | 6.7100e- 0.0663<br>003 |
| ROG                                    |          | 6.7100e- 0.0663 0.0948 1.5000e-<br>003 004 | 0.0000  | 6.7100e-<br>003        |
|                                        | Category | Off-Road                                   | Paving  | Total                  |

Date: 1/6/2021 1:52 PM Page 23 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2023
Unmitigated Construction Off-Site

| CO2e                           |          | 0.0000               | 0.0000   | 0.8968                                              | 0.8968                                      |
|--------------------------------|----------|----------------------|----------|-----------------------------------------------------|---------------------------------------------|
| N2O                            |          |                      | 0.0000   | 0.0000                                              | 0.0000                                      |
|                                | Į,       | 0.0000 0.0000        | 0.0000   | 2.0000 <del>-</del><br>005                          | 2.0000e-<br>005                             |
| Total CO2                      | MT/yr    | 0.000.0              | 0.0000   | 0.8963                                              | 0.8963                                      |
| NBio-CO2                       |          | 0.0000 0.0000        | 0.000.0  | 0.8963                                              | 0.8963                                      |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.000.0              | 0.000.0  | 0.0000                                              | 0.0000                                      |
| PM2.5 Bi                       |          | 0.000.0              | 0.000.0  | 2.9000e-<br>004                                     | 2.9000e-<br>004                             |
| Fugitive Exhaust PM2.5 PM2.5   |          | 0.0000               | 0.000.0  | 0000e-<br>005                                       | 1.0000e-<br>005                             |
| Fugitive<br>PM2.5              |          | 0.000.0              | 0.0000.0 | 3000e-<br>004                                       | 3000e-<br>004                               |
| PM10<br>Total                  |          | 0.0000               | 0000     | )800e-<br>003                                       | 1.0800e- 2.8                                |
| Exhaust<br>PM10                | styr     | 0.0000               | 0.0000   | 1.0000e- 1.0<br>005                                 | 1.0000e-<br>005                             |
| Fugitive<br>PM10               | tons/yr  | 0.000.0              | 0.0000   | 1.0700e-<br>003                                     | 1.0700e-<br>003                             |
|                                |          | 0.000.0              | 0.000.0  | 1.0000e-<br>005                                     | 1.0000e-<br>005                             |
| NOx CO SO2                     |          | 0.0000               | 0.0000   | 3.1200 <del>e-</del><br>003                         | 3.1200e-<br>003                             |
| NOX                            |          | 0.0000 0.0000 0.0000 | 0.0000   | 3.7000e 2.7000e 3.1200e 1.0000e-<br>004 004 003 005 | 3.7000e- 2.7000e- 3.1200e- 1.0000e- 004 005 |
| ROG                            |          | 0.0000               | 0.000.0  | 3.7000e-<br>004                                     | 3.7000e-<br>004                             |
|                                | Category | Hauling              | Vendor   | Worker                                              | Total                                       |

### Mitigated Construction On-Site

| C02e                                       |          | 13.1227                                        | 0.0000  | 13.1227                                    |
|--------------------------------------------|----------|------------------------------------------------|---------|--------------------------------------------|
| N2O                                        |          | 0.0000                                         | 0.0000  | 0.0000                                     |
| СН4                                        | 5        | 4.2100 <del>c</del><br>003                     | 0.000.0 | 4.2100e-<br>003                            |
| Total CO2                                  | MT/yr    | 13.0175                                        | 0.0000  | 13.0175                                    |
| NBio-CO2                                   |          | 0.0000 13.0175 13.0175 4.2100e- 0.0000 13.1227 | 0.0000  | 13.0175                                    |
| Bio- CO2 NBio- CO2 Total CO2 CH4           |          | 0.000.0                                        | 0.000.0 | 0.0000                                     |
| PW2.5<br>Total                             |          | 3.0500e-                                       | 0.0000  | 3.0500e-<br>003 003                        |
| Exhaust<br>PM2.5                           |          | 3.0500e- 3.0500e-<br>003 003                   | 0.0000  | 3.0500e-<br>003                            |
| Fugitive<br>PM2.5                          |          |                                                |         |                                            |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |          | 3.3200e-<br>003                                | 0.0000  | 3.3200e-<br>003                            |
| Exhaust<br>PM10                            | tons/yr  | 3.3200e- i 3.3200e-<br>003   003               | 0.0000  | 3.3200e-<br>003                            |
| Fugitive<br>PM10                           | ton      |                                                |         |                                            |
| S02                                        |          | 1.5000e-<br>004                                |         | 1.5000e-<br>004                            |
| တ                                          |          | 0.0948                                         |         | 0.0948                                     |
| ROG NOX CO                                 |          | 0.0663                                         |         | 6.7100e- 0.0663 0.0948 1.5000e-<br>003 004 |
| ROG                                        |          | 6.7100e- 0.0563 0.0948 1.5000e-<br>003 004     | 0.0000  | 6.7100e-<br>003                            |
|                                            | Category | Off-Road                                       | Paving  | Total                                      |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

3.6 Paving - 2023
Mitigated Construction Off-Site

| P157 14 5 5 4 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 0.0000   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | 0.0000   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ýr.           | 0.000.0  | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0000e-<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0000e-<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MT            |          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | 0.000.0  | 0.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | 0.0000   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | 0.0000   | 0.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.9000e-<br>004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9000e-<br>004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 0.0000   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000e-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0000e-<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 0.0000   | 0.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.8000e-<br>004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8000e-<br>004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 0.0000   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0800 <del>c-</del><br>003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0800 <del>e-</del><br>003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| slyr          | 0.0000   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000 <del>e</del> -<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0000e-<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| , ton         |          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0700e-<br>003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0700e-<br>003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 0.000.0  | 0.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0000e-<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000e-<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 0.0000   | 0.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1200 <del>c-</del><br>003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.1200e-<br>003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 0.0000   | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7000 <del>c</del><br>004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7000e- 2.7000e- 3.1200e- 1.0000e- 004 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | 0.0000   | 0.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7000e-<br>004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7000e-<br>004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Category      | Hauling  | Vendor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Worker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | Category | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. | 0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0 |

3.6 Paving - 2024

## **Unmitigated Construction On-Site**

| 07.7.61 0                        | e programa a |                                 |         | 1                  |
|----------------------------------|--------------|---------------------------------|---------|--------------------|
| CO2e                             |              | 22.2073                         | 0.0000  | 22.2073            |
| NZO                              |              | 0.0000                          | 0.0000  | 0.000              |
| CH4                              |              | 7.1200e-<br>003                 | 0.0000  | 7.1200e-<br>003    |
| Total CO2                        | MTW          | 22.0292                         | 0.000.0 | 22.0292            |
| NBio-CO2                         |              | 0.0000 22.0292 22.0292 7.1200e- | 0.0000  | 22.0292            |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |              | 0.000.0                         | 0.000.0 | 0.000              |
| PM2.5<br>Total                   |              | 4.7400 <del>c</del><br>003      | 0.000.0 | - 4.7400e-<br>003  |
| Exhaust<br>PM2.5                 |              | 4.7400e 4.7400e<br>003 003      | 0.0000  | 4.7400e-<br>003    |
| Fugitive<br>PM2.5                |              |                                 |         |                    |
| PM10<br>Total                    |              | 5.1500e-<br>003                 | 0.0000  | 5.1500e-<br>003    |
| Exhaust<br>PM10                  | tons/yr      | 5.1500e- 5.1500e-<br>003 003    | 0.0000  | 5.1500e- 5.<br>003 |
| Fugitive Exhaust<br>PM10 PM10    |              |                                 |         |                    |
|                                  |              | 2.5000e-<br>004                 |         | 2.5000e-<br>004    |
| 00                               |              | 0.1609                          |         | 0.1609             |
| ROG NOX CO SO2                   |              | 0.1048                          |         | 0.1048             |
| ROG                              |              | 0.0109 0.1048 0.1609 2.5000e-   | 0.0000  | 0.0109             |
|                                  | Category     | Off-Road                        | Paving  | Total              |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 25 of 44

Date: 1/6/2021 1:52 PM

3.6 Paving - 2024
Unmitigated Construction Off-Site

|                                  |          | c                           |         | ' <sub>(0</sub>                                        | ۵                                               |
|----------------------------------|----------|-----------------------------|---------|--------------------------------------------------------|-------------------------------------------------|
| C02e                             |          | 0.0000                      | 0.0000  | 1.4706                                                 | 1.4706                                          |
| NZO                              |          | 0.0000                      | 0.0000  | 0.0000                                                 | 0.0000                                          |
| CH4                              | lýr.     | 0.0000                      | 0.0000  | 4.0000e-<br>005                                        | 4.0000e-<br>005                                 |
| Total CO2                        | JYJLIN.  | 0.0000                      | 0.0000  | 1.4697                                                 | 1.4697                                          |
| NBio- CO2                        |          | 0.000.0 0.000.0             | 0.0000  | 1.4697                                                 | 1,4697                                          |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.0000                      | 0.000.0 | 0.0000                                                 | 0.000                                           |
| PM2.5<br>Total                   |          | 0.000                       | 0.000.0 | 4.9000 <del>e.</del><br>004                            | 4.9000e-<br>004                                 |
| Exhaus<br>PM2.                   |          | 0.0000 0.0000 0.0000 0.0000 | 0.000.0 | 0000 <del>e</del> -<br>005                             | 1.0000e-<br>005                                 |
| Fugitive<br>PM2.5                |          | 0.0000                      | 0.0000  | 4.8000e-<br>004                                        | 1.8200e- 4.8000e-<br>003 004                    |
| PM10<br>Total                    |          | 0.0000                      | 0.0000  | 820 <b>0</b> e-<br>003                                 | 1.8200e-<br>003                                 |
| Exhaust<br>PM10                  | tons/yr  | 0.0000                      | 0.0000  | 1.0000e- 1.<br>005                                     | 1.0000e-<br>005                                 |
| Fugitive<br>PM10                 | ton      | 0.000.0                     | 0.0000  | 1.8100e-<br>003                                        | 1.8100e-<br>003                                 |
| S02                              |          | 0.0000 0.0000 0.0000        | 0.0000  | 2.0000e-<br>005                                        | 5.9000e- 4.1000e- 4.9200e- 2.0000e- 004 004 004 |
| ဝ၁                               |          | 0.0000                      | 0.0000  | 4.9200e-<br>003                                        | 4.9200e-<br>003                                 |
| NOX                              |          | 0.0000                      | 0.0000  | 5.9000e- 4.1000e- 4.9200e- 2.0000e-<br>004 004 003 005 | 4.1000e-<br>004                                 |
| ROG                              |          | 0.0000                      | 0.0000  | 5.9000e-<br>004                                        | 5.9000e-<br>004                                 |
|                                  | Category | Hauling                     | Vendor  | Worker                                                 | Total                                           |

### Mitigated Construction On-Site

| PM2.5 Bio. CO2 NBio. CO2 Total CO2 CH4 N2O CO2e Total | MTVn     | ٧.                            | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 22.0292 22.0292 7.1200e- 0.0000 22.2073 003 |
|-------------------------------------------------------|----------|-------------------------------|------------------------------------|----------------------------------------------------|
| PM2.5 Bio<br>Total                                    |          | ~~~                           | 0.000.0                            | 4.7400e- 0.0                                       |
| Exhaust<br>PM2.5                                      |          | 4.7400e- 4.7400e-<br>003 003  | 0.0000                             | 4.7400e-<br>003                                    |
| Fugitive<br>PM2.5                                     |          |                               |                                    |                                                    |
| PM10<br>Total                                         |          |                               | 0.0000                             | 5.1500e-<br>003                                    |
| Exhaus<br>PM10                                        | tons/yr  | 5.1500e-<br>003               | 0.0000                             | 5.1500e-<br>003                                    |
| Fugitive<br>PM10                                      | loj.     |                               |                                    |                                                    |
|                                                       |          | 2.5000e-<br>004               |                                    | 2.5000e-<br>004                                    |
| CO 802                                                |          | 0.1609                        |                                    | 0.1609                                             |
| ŏ                                                     |          | 0.0109 0.1048 0.1609 2.5000e- |                                    | 0.0109 0.1048 0.1609 2.5000e-                      |
| <b>7</b> 06                                           |          | 0.0109                        | 0.0000                             | 0.0109                                             |
|                                                       | Category | Off-Road                      | Paving                             | Total                                              |

Date: 1/6/2021 1:52 PM Page 26 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2024
Mitigated Construction Off-Site

| CO2e                           |          | 0.0000               | 0.0000  | 1.4706                                                 | 1.4706                                          |
|--------------------------------|----------|----------------------|---------|--------------------------------------------------------|-------------------------------------------------|
| N2O                            |          | 0.0000               | 0.0000  | 0.0000                                                 | 0.000                                           |
| CH4                            | Vr.      | 0.0000               | 0.0000  | 4.0000e- 0<br>005                                      | 7 4.0000e-<br>005                               |
| Total CO2                      | NT/y     | 0.000.0              | 0.000.0 | 1.4697                                                 | 1.4697                                          |
| NBio-CO2                       |          | 0.000.0              | 0.000.0 | 1.4697                                                 | 1.4697                                          |
| Bio CO2 NBio CO2 Total CO2 CH4 |          | 0.0000               | 0.0000  | 0.0000                                                 | 0.0000                                          |
| PM2.5<br>Total                 |          | 0.0000               | 0.000.0 | 4.9000e-<br>004                                        | 4.9000e-<br>004                                 |
| Exhaust<br>PM2.5               |          | 0.0000               | 0.000.0 | 1.0000e-<br>005                                        | 1.0000e-<br>005                                 |
| Fugitive<br>PM2.5              |          | 0.0000               | 0.0000  | e- 4.8000e-<br>004                                     | 4.8000e-<br>004                                 |
| PM10<br>Total                  |          | 0.000.0              | 0.000.0 | . 1.8200e-<br>003                                      | 1.8200e-<br>003                                 |
| Exhaust<br>PM10                | síyr     | 0.0000 0.0000        | 0.000.0 | 1.0000e-<br>005                                        | 1.0000e-<br>005                                 |
| Fugitive<br>PM10               | tons/y   | ٥                    | 0.000.0 | 1.8100e-<br>003                                        | 1.8100e-<br>003                                 |
| co soz                         |          | 0.0000               | 0.0000  | 2.0000e-<br>005                                        | 2.0000e-<br>005                                 |
| 00                             |          | 0.0000               | 0.000.0 | 4.9200e-<br>003                                        | 4.9200e-<br>003                                 |
| NOX                            |          | 0.0000 0.0000 0.0000 | 0.000.0 | 5.9000e- 4.1000e- 4.9200e- 2.0000e-<br>004 004 003 005 | 5.9000e- 4.1000e- 4.9200e- 2.0000e- 004 004 005 |
| ROG                            |          | 0.0000               | 0.0000  | 5.9000e-<br>004                                        | 5.9000e-<br>004                                 |
|                                | Category | Hauling              | Vendor  | Worker                                                 | Total                                           |

## 3.7 Architectural Coating - 2024

**Unmitigated Construction On-Site** 

| e a                                          |          | 00                     | 45                          | 45                     |
|----------------------------------------------|----------|------------------------|-----------------------------|------------------------|
| C02e                                         |          | 0.0000                 | 4.4745                      | 4.4745                 |
| NZO                                          |          | 0.000.0                | 0.0000                      | 0.000                  |
| CH4                                          | Vr.      | 0.0000                 | 2.5000e- 0.<br>004          | 2.5000e-<br>004        |
| Total CO2                                    | MT/yr    | 0.0000                 | 4.4682                      | 4.4682 2.5000e-<br>004 |
| NBio- CO2                                    |          | 0.0000                 | 4.4682                      | 4.4682                 |
| Bio- CO2                                     |          | 0.0000                 | 0.0000                      | 0.000.0                |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total |          | 0.0000                 | 1.0700 <del>c.</del><br>003 | 1.0700e-<br>003        |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5   |          | 0.0000                 | 1.0700e-<br>003             | 1.0700e-<br>003        |
| Fugitive<br>PM2.5                            |          |                        |                             |                        |
| PM10<br>Total                                |          | 0.000.0                | 1.0700e-<br>003             | 1.0700e-<br>003        |
| Exhaust<br>PM10                              | tons/yr  | 0.0000                 | 1.0700e-<br>003             | 1.0700e-<br>003        |
| Fugitive<br>PM10                             | uoi,     |                        |                             |                        |
| S02                                          |          |                        | 0.0317 5.0000e-<br>005      | 5.0000e-<br>005        |
| co                                           |          |                        | 0.0317                      | 0.0317                 |
| ROG NOX CO                                   |          |                        | 0.0213                      | 4.1404 0.0213          |
| ROG                                          |          | 4.1372                 | 3.1600e- 0.0213 C<br>003    | 4.1404                 |
|                                              | Category | Archit. Coating 4.1372 | Off-Road                    | Total                  |

Date: 1/6/2021 1:52 PM Page 27 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.7 Architectural Coating - 2024
Unmitigated Construction Off-Site

| CO2e                             |          | 0.0000                             | 0.0000               | 24.9558                    | 24.9558                                    |
|----------------------------------|----------|------------------------------------|----------------------|----------------------------|--------------------------------------------|
| N2O CO2e                         |          | 0.0000                             | 0.0000               | 0.0000                     | 0.0000                                     |
| CH4                              | ýr       | 0.0000                             | 0.0000               | 6.1000e-<br>004            | 6.1000e-<br>004                            |
| Total CO2                        | MITAN    | 0.0000                             | 0.0000               | 24.9407                    | 24.9407                                    |
| NBio-CO2                         |          | 0.000.0                            | 0.0000               | 24.9407                    | 0.0000 24.9407 24.9407                     |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.0000 0.0000 0.0000               | 0.0000               | 0.0000                     | 0.000                                      |
| PM2.5<br>Total                   |          | ,                                  | 0.0000               | 8.3700e-<br>003            | 8.3700e-<br>003                            |
| Exhaust<br>PM2.5                 |          | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000               | 2.2000 <del>c</del><br>004 | 2.2000e-<br>004                            |
| Fugitive Exhaust<br>PM2.5 PM2.5  |          | 0.0000                             | 0.0000               | 8.1500e-<br>003            | 8.1500e-<br>003                            |
| PM10<br>Total                    |          | 0.0000                             | 0.0000               | .0309                      | 0.0309                                     |
| Exhaust<br>PM10                  | tons/yr  | 0.0000                             | 0.0000               | 2.3000e- C<br>004          | 2.3000e-<br>004                            |
| Fugitive<br>PM10                 | lon      | 0.0000                             | 0.000.0              | 0.0307                     | 0:0307                                     |
|                                  |          | 0.0000                             | 0.000.0              | 0.0835 2.8000e-<br>004     | 2.8000e-<br>004                            |
| 8                                |          | 0.000.0                            | 0.0000               | 0.0835                     | 0.0835                                     |
| ROG NOx CO SO2                   |          | 0.0000 0.0000 0.0000               | 0.0000 0.0000 0.0000 | 6.9900e-<br>003            | 0.0101 6.9900e- 0.0835 2.8000e-<br>003 004 |
| ROG                              |          | 0.0000                             | 0.0000               | 0.0101                     | 0.0101                                     |
|                                  | Category | Hauling                            | Vendor               | Worker                     | Total                                      |

### Mitigated Construction On-Site

| C02e                                    |          | 0.0000                 | 4.4745                     | 4.4745                        |
|-----------------------------------------|----------|------------------------|----------------------------|-------------------------------|
| NZO                                     |          | 0.0000                 | 0.0000                     | 0.0000                        |
| CH4                                     | Уr       | 0.000.0                | 2.5000e- 0.<br>004         | 2.5000e-<br>004               |
| Total CO2                               | MTM      | 0.0000                 | 4.4682                     | 4.4682 2.5000e-               |
| NBio-CO2                                |          | 0.0000 0.0000          | 4.4682                     | 4.4682                        |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N20 CO2e |          | 0.0000                 | 0.000.0                    | 0000                          |
| PM2.5<br>Total                          |          | 0.000.0 0.000.0        | 1.0700e-<br>003            | 1.0700e-<br>003               |
| Exhaust<br>PM2.5                        |          | 0.000.0                | 1.0700 <del>e</del><br>003 | 1.0700e-<br>003               |
| ugitive<br>PM2.5                        |          |                        |                            |                               |
| PM10<br>Total                           |          | 0.000.0                | 1.0700e-<br>003            | 1.0700e-<br>003               |
| Fugitive Exhaust<br>PM10 PM10           | slyr     | 0.0000 0.0000          | 1.0700e-<br>003            | 1.0700e-<br>003               |
| Fugitive<br>PM10                        | tons/yr  |                        |                            |                               |
| 100000177650                            |          |                        | 0.0317 5.0000e-<br>005     | 5.0000e-<br>005               |
| zos oo                                  |          |                        | 0.0317                     | 0.0317                        |
| ROG NOX                                 |          |                        | 0.0213                     | 4.1404 0.0213 0.0317 5.0000e- |
| ROG                                     |          | 4.1372                 | 3.1600e- 0.0213 0<br>003   | 4.1404                        |
|                                         | Category | Archit. Coating 4.1372 | Off-Road                   | Total                         |

Page 28 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

3.7 Architectural Coating - 2024
Mitigated Construction Off-Site

| CO2e                                     |          | 0.0000               | 0.0000  | 24.9558                | 24.9558                |
|------------------------------------------|----------|----------------------|---------|------------------------|------------------------|
| N20                                      |          | 0.0000               | 0.0000  | 0.0000                 | 0.0000                 |
| CH4                                      | MT/vr    | 0.0000 0.0000        | 0.0000  | 6.1000e-<br>004        | 6.1000e-<br>004        |
| Total CO2                                | W        | 0.000.0              | 0.0000  | 24.9407                | 24.9407                |
| NBio-CO2                                 |          | 0.0000               | 0.000.0 | 24.9407                | 24.9407                |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 Total |          | 0.0000               | 00000   | 0.0000                 | 0.0000                 |
| PM2.5<br>Total                           |          | 0.0000               | 0.000.0 | 8.3700e-<br>003        | e- 8.3700e-<br>003     |
| Exhaust<br>PM2.5                         |          | 0.0000               | 0.000.0 | 2.2000e-<br>004        | 2.2000e-<br>004        |
| Fugitive<br>PM2.5                        |          | 0.0000               | 0.0000  | 8.1500e-<br>003        | 8.1500e-<br>003        |
| PM10<br>Total                            |          | 0.0000               | 0.0000  | 0.0309                 | 0.0309                 |
| Exhaust<br>PM10                          | tons/yr  | 0.0000               | 0.0000  | 2.3000e-<br>004        | 2.3000e-<br>004        |
| Fugitive<br>PM10                         | tou      | 0.0000               | 0.0000  | 0.0307                 | 0.0307                 |
| S02                                      |          | 0.0000               | 0.0000  | 2.8000e- 0<br>004      | 2.8000e-<br>004        |
| 00                                       |          | 0.0000 0.0000 0.0000 | 0.0000  | 0.0835                 | 0.0835                 |
| ХОN                                      |          |                      | 0.0000  | 0.0101 6.9900e-<br>003 | 0.0101 6.9900e-<br>003 |
| ROG                                      |          | 0.0000               | 0.0000  | 0.0101                 | 0.0101                 |
|                                          | Category | Hauling              | Vendor  | Worker                 | Total                  |

## 4.0 Operational Detail - Mobile

## 4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2016.3.2 Page 29 of 44

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

| coze                                         |          | 7,629.016<br>2                                         | 7,629.016<br>2                                            |
|----------------------------------------------|----------|--------------------------------------------------------|-----------------------------------------------------------|
| N2O CO2e                                     |          | 0.000.0                                                | 0.0000                                                    |
| CH4                                          | Y        | 0.3407                                                 | 0.3407                                                    |
| Total CO2                                    | MT/      | 7,620.498<br>6                                         | 7,620.498<br>6                                            |
| NBio-CO2                                     |          | 0.0000 7,620.498 7,620.498 0.3407 0.0000 7,629.016 6 2 | 7,620.498<br>6                                            |
| Bio- CO2                                     |          | 0.0000                                                 | 0.0000 7,620.498 7,620.498 0.3407 0.0000 7,629.016<br>6 6 |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total |          | 1                                                      | 2.1434                                                    |
| 1.24                                         |          | 0.0539                                                 |                                                           |
| Fugitive Exhaust<br>PM2.5 PM2.5              |          | 2.0895                                                 | 2.0895                                                    |
| PM10<br>Total                                |          | 7.8559                                                 | 7.8559 2.0895 0.0539                                      |
| gitive Exhaust<br>M10 PM10                   | W.       |                                                        | 0.0580                                                    |
| Fugitive<br>PM10                             | tons/y   |                                                        | 7.7979                                                    |
| S02                                          |          | 0.0821                                                 | 0.0821                                                    |
| ට                                            |          | 19.1834                                                | 19.1834                                                   |
| XON                                          |          | 7.9962                                                 | 1.5857 7.9962 19.1834 0.0821                              |
| ROG                                          |          | 1.5857 7.9962 19.1834 0.0821 7.                        | 1.5857                                                    |
|                                              | Category | Mitigated                                              | Unmitigated                                               |

### 4.2 Trip Summary Information

|                                     | Aver     | Average Daily Trip Rate | ate      | Unmitigated | Mitigated  |
|-------------------------------------|----------|-------------------------|----------|-------------|------------|
| and Use                             | Weekday  | Saturday                | Sunday   | Annual VMT  | Annual VMT |
| Apartments Low Rise                 | 145.75   | 154.25                  | 154.00   | 506,227     | 506,227    |
| Apartments Mid Rise                 | 4,026.75 | 3,773.25                | 4075.50  | 13,660,065  | 13,660,065 |
| General Office Building             | 288.45   | 62.55                   | 31.05    | 706,812     | 706,812    |
| High Turnover (Sit Down Restaurant) | 2,368.80 | 2,873.52                | 2817.72  | 3,413,937   | 3,413,937  |
| Hotel                               | 192.00   | 187.50                  | 160.00   | 445,703     | 445,703    |
| Quality Restaurant                  | 501.12   | 511.92                  | 461.20   | 707,488     | 707,488    |
| Regional Shopping Center            | 528.08   | 601.44                  | 357.84   | 1,112,221   | 1,112,221  |
| Total                               | 8,050.95 | 8,164.43                | 8,057.31 | 20,552,452  | 20,552,452 |
|                                     |          |                         |          |             |            |

### 4.3 Trip Type Information

Page 30 of 44

Date: 1/6/2021 1:52 PM

age South Specific Plan (Proposed) - Los Angeles-South Coast County, Annua

|                                                                                 | % <del>0</del> | Pass-by                           | က                   | က                   | 4                       | 43                      | 4     | 44                 | 11                       |
|---------------------------------------------------------------------------------|----------------|-----------------------------------|---------------------|---------------------|-------------------------|-------------------------|-------|--------------------|--------------------------|
| ty, Annual                                                                      | Trip Purpose % | Diverted                          | 1                   | =                   | 19                      | 20                      | 38    | 18                 | 35                       |
| า Coast Coun                                                                    |                | Primary                           | 98                  | 98                  | 77                      | 37                      | 28    | 88                 | 54                       |
| Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual |                | H-W or C-W H-S or C-C H-O or C-NW | 40.60               | 40.60               | 19.00                   | 19.00                   | 19.00 | 19.00              | 19.00                    |
| sed) - Los /                                                                    | Trip %         | H-S or C-C                        | 19.20               | 19.20               | 48.00                   | 72.50                   | 61.60 | 00.69              | 64.70                    |
| 'lan (Propo                                                                     |                | H-W or C-W                        | 40.20               | 40.20               | 33.00                   | 8.50                    | 19.40 | 12.00              | 16.30                    |
| uth Specific F                                                                  |                | H-S or C-C H-O or C-NW            | 8.70                | 8.70                | 06.9                    | 6.90                    | 96.90 | 6.90               | 6.90                     |
| Village Sou                                                                     | Miles          | H-S or C-C                        | 5.90                | 5.90                | 8.40                    | 8.40                    | 8.40  | 8.40               | 8.40                     |
|                                                                                 |                | H-W or C-W                        | 14.70               | 14.70               | 16.60                   | 16.60                   | 16.60 | 16.60              | 16.60                    |
|                                                                                 |                | Land Use                          | Apartments Low Rise | Apartments Mid Rise | General Office Building | High Turnover (Sit Down | Hotel | Quality Restaurant | Regional Shopping Center |

#### 4.4 Fleet Mix

|          | 1        |                                                                                                                      |          |          |          |          |          |          |          |          |                            |          |                                        |
|----------|----------|----------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------------|----------|----------------------------------------|
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971 | 0.044216                   | 0.543088 | Regional Shopping Center               |
| 0.000821 | 0.000712 | 0.116369  0.014033  0.006332  0.021166  0.033577  0.002613  0.001817  0.005285  0.000712  0.000821                   | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971 | 0.543088 0.044216 0.209971 | 0.543088 | Quality Restaurant                     |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971 | 43088 0.044216             | 0.543088 | Hotel                                  |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971 | 0.044216                   | 0.543088 | High Turnover (Sit Down<br>Restaurant) |
| 0.000821 | 0.000712 | 0.543088 0.04216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712           | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971 | 0.543088 0.044216 0.2      | 0.543088 | General Office Building                |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971 | 0.044216                   | 0.543088 | Apartments Mid Rise                    |
| 0.000821 | 0.000712 | 09971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821                      | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971 | 0.543088 0.044216 0.20     | 0.543088 | Apartments Low Rise                    |
| MH       | SBUS     | MHD HHD OBUS MCY SBUS                                                                                                | SNBN     | OBUS     | HHD      | MHD      | LHD2     | CHD1     | MDV LHD1 | LDT2     | LDA LDT1 LD                | LDA      | Land Use                               |

### 5.0 Energy Detail

Historical Energy Use: N

## 5.1 Mitigation Measures Energy

Page 31 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

|                            | ROG    | ROG NOX | ဝ၁    | S02                            | Fugitive<br>PM10 | Fugitive Exhaust PM10 PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Fugitive Exhaust<br>PM2.5 PM2.5 | PM2.5<br>Total | Bio- CO2 | Bio- CO2 NBio- CO2 Total CO2 CH4                   | Total CO2      | CH4    | N2O                   | C02e                  |
|----------------------------|--------|---------|-------|--------------------------------|------------------|----------------------------|---------------|-------------------|---------------------------------|----------------|----------|----------------------------------------------------|----------------|--------|-----------------------|-----------------------|
| Category                   |        |         |       |                                | tons/yr          | síyr                       |               |                   |                                 |                |          |                                                    | MT/yr          | y      |                       |                       |
| Electricity<br>Mitigated   |        |         |       |                                |                  | 0.000.0 0.000.0            | 0.0000        |                   | 0.0000                          | 0.0000         | 0.0000   | 0.0000 2,512.646 2,512.646 0.1037 0.0215 2,521.635 | 2,512.646<br>5 | 0.1037 | 0.0215                | 2,521.635<br>6        |
| Electricity<br>Unmitigated |        |         |       |                                |                  | 0.0000                     | 0.0000        |                   | 0.0000                          | 0.0000         | 0.0000   | 2,512.646 2,512.646<br>5                           | 2,512.646<br>5 | 0.1037 | 0.0215                | 0.0215 2,521.635<br>6 |
| NaturalGas<br>Mitigated    | 0.1398 | 1.2312  | 0.777 | 7.6200e-<br>003                |                  | 9960.0                     | 9960.0        |                   | 0.0966                          | 0.0966         | 0.0000   | 1,383,426 1,383,426 0.0265                         | 1,383,426<br>7 | 0.0265 | 0.0254                | 4 1,391.647<br>8      |
| NaturalGas<br>Unmitigated  | 0.1398 | 1.2312  | 0.777 | 0 7.6200 <del>e</del> -<br>003 |                  | 9960.0                     | 9960.0        |                   | 0.0966                          | 0.0966         | 0.0000   | 0.0000 1,383.426 1,383.426 0.0265                  | 1,383.426<br>7 |        | 0.0254 1,391.647<br>8 | 1,391.647<br>8        |

Page 32 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

5.2 Energy by Land Use - NaturalGas

#### Unmitigated

| C02e                         |          | 21.9284                      | 701.1408               | 25.1468                    | 445.9468                               | 93.4557          | 99.0993               | 4.9301                       | 1,391.647<br>8  |
|------------------------------|----------|------------------------------|------------------------|----------------------------|----------------------------------------|------------------|-----------------------|------------------------------|-----------------|
| N20                          |          | 4.0000e-<br>004              | 0.0128                 | 4.6000e-<br>004            | 8.1300e-<br>003                        | 1.7000e-<br>003  | 1.8100e-<br>003       | 9.0000e-<br>005              | 0.0254          |
| CH4                          | λ.       | 4.2000 <del>e-</del><br>004  | 0.0134                 | 4.8000e-<br>004            | 8.5000e-<br>003                        | 1.7800e-<br>003  | 1.8900e-<br>003       | 9.0000e-<br>005              | 0.0265          |
| Total CO2                    | MTlyr    | 21.7988                      | 696.9989               | 24.9983                    | 443.3124                               | 92.9036          | 98.5139               | 4.9009                       | 1,383.426<br>8  |
| Bio- CO2 NBio- CO2 Total CO2 |          | 21.7988                      | 686.969                | 24.9983                    | 443.3124                               | 92.9036          | 98.5139               | 4.9009                       | 1,383.426<br>8  |
| Bio-CO2                      |          | 0.000                        | 0.000.0                | 0.0000                     | 0.0000                                 | 0.0000           | 0.000.0               | 0.000                        | 0.000.0         |
| PM2.5<br>Total               |          | 1.5200e-<br>003              | 0.0487                 | 1.7500e-<br>003            | 0.0310                                 | 6.4900e-<br>003  | 6.8800e-<br>003       | 3.4000e-<br>004              | 9960'0          |
| Exhaust<br>PM2.5             |          | 1.5200e-<br>003              | 0.0487                 | 1.7500e-<br>003            | 0.0310                                 | 6.4900e-<br>003  | 6.8800e-<br>003       | 3.4000e-<br>004              | 9960'0          |
| Fugitive<br>PM2.5            |          |                              |                        |                            |                                        |                  |                       |                              |                 |
| PM10<br>Total                |          | 1.5200e-<br>003              | 0.0487                 | 1.7500e-<br>003            | 0.0310                                 | 6.4900e-<br>003  | 6.8800e-<br>003       | 3.4000e-<br>004              | 9960'0          |
| Exhaust<br>PM10              | tońskyr  | 1.5200e-<br>003              | 0.0487                 | 1.7500e-<br>003            | 0.0310                                 | 6.4900e-<br>003  | 6.8800e-<br>003       | 3.4000e-<br>004              | 9960'0          |
| Fugitive<br>PM10             | ton      |                              |                        |                            |                                        |                  |                       |                              |                 |
| S02                          |          | 1.2000e-<br>004              | 3.8400e-<br>003        | 1.4000e-<br>004            | 2.4400e-<br>003                        | 5.1000e-<br>004  | 5.4000e-<br>004       | 3.0000e-<br>005              | 7.6200e-<br>003 |
| တ                            |          | 8.0100 <del>e</del> -<br>003 | 0.2561                 | 0.0193                     | 0.3421                                 | 0.0717           | 0.0760                | 3.7800 <del>e</del> -<br>003 | 0.777.0         |
| XON                          |          | 0.0188                       | 0.6018                 | 0.0230                     | 0.4072                                 | 0.0853           | 0.0905                | 4.5000 <del>e</del> -<br>003 | 1.2312          |
| ROG                          |          | 2.2000e-<br>003              | 0.0704                 | 2.5300e-<br>003            | 0.0448                                 | 9.3900e-<br>003  | 9.9500e-<br>003       | 5.0000e-<br>004              | 0.1398          |
| NaturalGa<br>s Use           | kBTU/yr  | 408494                       | 1.30613e<br>+007       | 468450                     | 8.30736e<br>+006                       | 1.74095e<br>+006 | 1.84608e<br>+006      | 91840                        |                 |
|                              | Land Use | Apartments Low<br>Rise       | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel            | Quality<br>Restaurant | Regional<br>Shopping Center  | Total           |

Page 33 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

5.2 Energy by Land Use - NaturalGas

#### Mitigated

| 0                            |          | 4                      | .88                    | . 8                        | - 89                                                 |                              | 33.                   | <u>.</u> -                  | 4               |
|------------------------------|----------|------------------------|------------------------|----------------------------|------------------------------------------------------|------------------------------|-----------------------|-----------------------------|-----------------|
| COZe                         |          | 21.9284                | 701.1408               | 25.1468                    | 445.9468                                             | 93.4557                      | 99.0993               | 4.9301                      | 1,391.647<br>8  |
| N20                          |          | 4.0000e-<br>004        | 0.0128                 | 4.6000e-<br>004            | 8.1300e-<br>003                                      | 1.7000e-<br>003              | 1.8100e-<br>003       | 9.0000e-<br>005             | 0.0254          |
| CH4                          | MT/yr    | 4.2000e-<br>004        | 0.0134                 | 4.8000e-<br>004            | 8.5000e-<br>003                                      | 1.7800e-<br>003              | 1.8900e-<br>003       | 9.0000e-<br>005             | 0.0265          |
| Total CO2                    | W        | 21.7988                | 696.9989               | 24.9983                    | 443.3124                                             | 92.9036                      | 98.5139               | 4.9009                      | 1,383.426<br>8  |
| Bio- CO2 NBio- CO2 Total CO2 |          | 21.7988                | 696.9989               | 24.9983                    | 443.3124                                             | 92.9036                      | 98.5139               | 4.9009                      | 1,383.426<br>8  |
| Bio-CO2                      |          | 0.0000                 | 0.0000                 | 0.0000                     | 0.0000                                               | 0.0000                       | 0.0000                | 0.0000                      | 0.000           |
| PM2.5<br>Total               |          | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003              | 6.8800e-<br>003       | 3.4000 <del>6</del><br>004  | 0.0966          |
| Exhaust<br>PM2.5             |          | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003              | 6.8800e-<br>003       | 3.4000e-<br>004             | 9960.0          |
| Fugitive<br>PM2.5            |          |                        |                        |                            |                                                      |                              |                       |                             |                 |
| PM10<br>Total                |          | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003              | 6.8800e-<br>003       | 3.4000e-<br>004             | 9960.0          |
| Exhaust<br>PM10              | tons/yr  | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900 <del>e</del> -<br>003 | 6.8800e-<br>003       | 3.4000e-<br>004             | 9960.0          |
| Fugitive<br>PM10             | tor      |                        |                        |                            |                                                      |                              |                       |                             |                 |
| s02                          |          | 1.2000e-<br>004        | 3.8400e-<br>003        | 1.4000e-<br>004            | 2.4400e-<br>003                                      | 5.1000e-<br>004              | 5.4000e-<br>004       | 3.0000e-<br>005             | 7.6200e-<br>003 |
| 9                            |          | 8.0100e-<br>003        | 0.2561                 | 0.0193                     | 0.3421                                               | 0.0717                       | 0.0760                | 3.7800e-<br>003             | 0.7770          |
| XON                          |          | 0.0188                 | 0.6018                 | 0.0230                     | 0.4072                                               | 0.0853                       | 0.0905                | 4.5000e-<br>003             | 1.2312          |
| ROG                          |          | 2.2000e-<br>003        | 0.0704                 | 2.5300e-<br>003            | 0.0448                                               | 9.3900e-<br>003              | 9.9500e-<br>003       | 5.0000e-<br>004             | 0.1398          |
| NaturalGa<br>s Use           | квтилл   | 408494                 | 1.30613e<br>+007       | 468450                     | 8.30736e<br>+006                                     | 1.74095e<br>+006             | 1.84608e<br>+006      | 91840                       |                 |
|                              | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit 8.30736e<br>Down Restaurant) +006 | Hotel                        | Quality<br>Restaurant | Regional<br>Shopping Center | Total           |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 34 of 44 Date: 1/6/2021 1:52 PM

5.3 Energy by Land Use - Electricity

#### **Unmitigated**

| C02e               |          | 33.8978                | 1,262.086<br>9         | 186.9165                   | 508.1135                               | 175.9672        | 112.9141              | 241.7395                    | 2,521.635<br>6 |
|--------------------|----------|------------------------|------------------------|----------------------------|----------------------------------------|-----------------|-----------------------|-----------------------------|----------------|
| N2O                | MT/yr    | 2.9000e-<br>004        | 0.0107                 | 1.5900e-<br>003            | 4.3200e-<br>003                        | 1.5000e-<br>003 | 9.6000e-<br>004       | 2.0600e-<br>003             | 0.0215         |
| СН4                | LW.      | 1.3900e-<br>003        | 0.0519                 | 7.6900e-<br>003            | 0.0209                                 | 7.2400e-<br>003 | 4.6500e-<br>003       | 9.9400e-<br>003             | 0.1037         |
| Total CO2          |          | 33.7770                | 1,257.587<br>9         | 186.2502                   | 506.3022                               | 175.3399        | 112.5116              | 240.8778                    | 2,512.646<br>5 |
| Electricity<br>Use | kWh/yr   | 106010                 | 3.94697e<br>+006       | 584550                     | 1.58904e<br>+006                       | 550308          | 353120                | 756000                      |                |
|                    | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel           | Quality<br>Restaurant | Regional<br>Shopping Center | Total          |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

5.3 Energy by Land Use - Electricity

Mitigated

| CO2e               |            | 33.8978                | 1,262.086<br>9         | 186.9165                   | 508.1135                               | 175.9672        | 112.9141              | 241.7395                    | 2,521.635<br>6 |
|--------------------|------------|------------------------|------------------------|----------------------------|----------------------------------------|-----------------|-----------------------|-----------------------------|----------------|
| N2O                | MT/yr      | 2.9000e-<br>004        | 0.0107                 | 1.5900e-<br>003            | 4.3200e-<br>003                        | 1.5000e-<br>003 | 9.6000e-<br>004       | 2.0600e-<br>003             | 0.0215         |
| СН4                | <u>I</u> W | 1.3900e-<br>003        | 0.0519                 | 7.6900e-<br>003            | 0.0209                                 | 7.2400e-<br>003 | 4.6500e-<br>003       | 9.9400e-<br>003             | 0.1037         |
| Total CO2          |            | 33.7770                | 1,257.587<br>9         | 186.2502                   | 506.3022                               | 175.3399        | 112.5116              | 240.8778                    | 2,512.646<br>5 |
| Electricity<br>Use | kwhyr      | 106010                 | 3.94697e<br>+006       | 584550                     | 1.58904e<br>+006                       | 550308          | 353120                | 756000                      |                |
|                    | Land Use   | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel           | Quality<br>Restaurant | Regional<br>Shopping Center | Fotal          |

6.0 Area Detail

### 6.1 Mitigation Measures Area

Date: 1/6/2021 1:52 PM Page 36 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

0.0714 0.0000 220.9670 220.9670 0.0201 3.7400e 222.5835 0.0000 220.9670 220.9670 0.0201 3.7400e 222.5835 C02e NZO CH4 MT/yr Total CO2 NBio-CO2 Bio-CO2 0.0714 0.0714 PM2.5 Total Exhaust PM2.5 Fugitive PM2.5 0.0714 0.0714 PM10 Total 0.0714 0.0714 Exhaust PM10 tons/yr Fugitive PM10 Unmitigated 5.1437 0.2950 10.3804 1.6700e-0.2950 10.3804 1.6700e-202 ဗ ŏ 5.1437 ROG Mitigated Category

6.2 Area by SubCategory

Unmitigated

|                            |             |                          |                      | ,                 |                         | _               |
|----------------------------|-------------|--------------------------|----------------------|-------------------|-------------------------|-----------------|
| C02e                       |             | 0.0000                   | 0.0000               | 205.3295          | 17.2540                 | 222.5835        |
| N20                        |             | 0.0000                   | 0.0000               | 3.7400e-<br>003   | 0.0000                  | 3.7400e-<br>003 |
| CH4                        | į.          | 0.0000                   | 0.0000               | 3.9100e-<br>003   | 0.0161                  | 0.0201          |
| Fotal CO2                  | TWT/W       | 0.000.0                  | 0.0000               |                   | 16.8504                 | 220.9670        |
| Bio-CO2 NBio-CO2 Total CO2 |             | 0.000.0                  | 0.000.0              | 204.1166 204.1166 | 16.8504                 | 220.9670        |
| Bio-CO2                    |             | 0.0000                   | 0.0000               | 0.0000            | 0.0000                  | 0.0000          |
| PM2.5.<br>Total            |             | 0.000.0                  | 0.000.0              | 0.0143            | 0.0572                  | 0.0714          |
| Exhaust<br>PM2.5           |             | 0.000.0                  | 0.000.0              | 0.0143            | 0.0572                  | 0.0714          |
| Fugitive<br>PM2.5          |             |                          | <br> <br>            |                   |                         |                 |
| PM10<br>Total              |             | 0.0000                   | 0.000.0              | 0.0143            | 0.0572                  | 0.0714          |
| Exhaust<br>PM10            | tons/yr     | 0.0000                   | 0.000.0              | 0.0143            | 0.0572                  | 0.0714          |
| Fugitive<br>PM10           | ton         |                          |                      |                   |                         |                 |
| S02                        |             |                          |                      | 1.1200e-<br>003   | 5.4000e-<br>004         | 1.6600e-<br>003 |
| 8                          |             |                          |                      | 0.0750            | 10.3054 5.4000e-<br>004 | 10.3804         |
| NOX                        |             |                          |                      | 0.1763            | 0.1187                  | 0.2950          |
| ROG                        |             | 0.4137                   | 4.3998               | 0.0206            | 0.3096                  | 5.1437          |
|                            | SubCategory | Architectural<br>Coating | Consumer<br>Products | Hearth            | Landscaping             | Total           |

Page 37 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

6.2 Area by SubCategory

Mitigated

| F 2004                       | EXTRACT     | _                        | -                    |                   |                 | T               |
|------------------------------|-------------|--------------------------|----------------------|-------------------|-----------------|-----------------|
| CO2e                         |             | 0.0000                   | 0.0000               | 205.3295          | 17.2540         | 222.5835        |
| N2O                          |             | 0.0000                   | 0.0000               | 3.7400e-<br>003   | 0.0000          | 3.7400e-<br>003 |
| CH4                          | MTlyr       | 0.0000                   | 0.0000               | 3.9100e-<br>003   | 0.0161          | 0.0201          |
| Total CO2                    | M           | 0.000.0                  | 0.0000               | 204.1166          | 16.8504         | 220.9670        |
| Bio- CO2 NBio- CO2 Total CO2 |             | 0.000.0                  | 0.0000               | 204,1166 204,1166 | 16.8504         | 220.9670        |
| Bio-CO2                      |             | 0.000.0                  | 0.000.0              | 0.0000            | 0.0000          | 0.0000          |
| PM2.5<br>Total               |             | 0.000.0                  | 0.0000               | 0.0143            | 0.0572          | 0.0714          |
| Exhaust<br>PM2.5             |             | 0.0000                   | 0.0000               | 0.0143            | 0.0572          | 0.0714          |
| Fugitive<br>PM2.5            |             |                          |                      |                   |                 |                 |
| PM10<br>Total                |             | 0.0000                   | 0.0000               | 0.0143            | 0.0572          | 0.0714          |
| Exhaust<br>PM10              | tons/yr     | 0.0000                   | 0.0000               | 0.0143            | 0.0572          | 0.0714          |
| Fugitive<br>PM10             | (Ou         |                          |                      |                   |                 |                 |
| s02                          |             |                          |                      | 1.1200e-<br>003   | 5.4000e-<br>004 | 1.6600e-<br>003 |
| 8                            |             |                          |                      | 0.0750            | 10.3054         | 10.3804         |
| XON                          |             |                          |                      | 0.1763            | 0.1187          | 0.2950          |
| ROG                          |             | 0.4137                   | 4.3998               | 0.0206            | 0.3096          | 5.1437          |
|                              | SubCategory | Architectural<br>Coating | Consumer<br>Products | Hearth            | Landscaping     | Total           |

### 7.0 Water Detail

## 7.1 Mitigation Measures Water

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

| C02e          | 683.7567  | 683.7567    |  |
|---------------|-----------|-------------|--|
| N20           | 0.0755    | 0.0755      |  |
| CH4<br>MTV    | 3.0183    | 3.0183      |  |
| Total CO2 CH4 | 585.8052  | 585.8052    |  |
| Category      | Mitigated | Unmitigated |  |

Page 39 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

7.2 Water by Land Use

#### Unmitigated

|                        |          |                        |                        |                            |                                        | _                     |                       |                             |          |
|------------------------|----------|------------------------|------------------------|----------------------------|----------------------------------------|-----------------------|-----------------------|-----------------------------|----------|
| C02e                   |          | 12.6471                | 493.2363               | 61.6019                    | 62.8482                                | 7.5079                | 13.9663               | 31.9490                     | 683.7567 |
| NZO                    | MT/yr    | 1.3400e-<br>003        | 0.0523                 | 6.5900e-<br>003            | 8.8200e-<br>003                        | 1.0300e-<br>003       | 1.9600e-<br>003       | 3.4200e-<br>003             | 0.0755   |
| CH4                    | M        | 0.0535                 | 2.0867                 | 0.2627                     | 0.3580                                 | 0.0416                | 0.0796                | 0.1363                      | 3.0183   |
| Total CO2              |          | 10.9095                | 425.4719               | 53.0719                    | 51.2702                                | 6.1633                | 11.3934               | 27.5250                     | 585.8052 |
| Indoor/Out<br>door Use | Mgal     | 1.62885 /<br>1.02688   | 63.5252 /<br>40.0485   | 7.99802 /<br>4.90201       | 10.9272 / 10.697482                    | 1.26834 /<br>0.140927 | 2.42827 /<br>0.154996 | 4.14806 /<br>2.54236        |          |
|                        | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel                 | Quality<br>Restaurant | Regional<br>Shopping Center | Total    |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 40 of 44

Date: 1/6/2021 1:52 PM

7.2 Water by Land Use

Mitigated

| C02e                   |          | 12.6471                | 493.2363               | 61.6019                    | 62.8482                               | 7.5079                | 13.9663               | 31.9490                     | 683.7567 |
|------------------------|----------|------------------------|------------------------|----------------------------|---------------------------------------|-----------------------|-----------------------|-----------------------------|----------|
| N20                    | MT/yr    | 1.3400e-<br>003        | 0.0523                 | 6.5900e-<br>003            | 8.8200e-<br>003                       | 1.0300e-<br>003       | 1.9600e-<br>003       | 3.4200e-<br>003             | 0.0755   |
| CH4                    | LW.      | 0.0535                 | 2.0867                 | 0.2627                     | 0.3580                                | 0.0416                | 0.0796                | 0.1363                      | 3.0183   |
| Total CO2              |          | 10.9095                | 425.4719               | 53.0719                    | 51.2702                               | 6.1633                | 11.3934               | 27.5250                     | 585.8052 |
| Indoor/Out<br>door Use | Mgal     | 1.62885 /<br>1.02688   | 63.5252 /<br>40.0485   | 7.99802 /<br>4.90201       | 10.9272 /<br>0.697482                 | 1.26834 /<br>0.140927 | 2.42827 /<br>0.154996 | 4.14806 /<br>2.54236        |          |
|                        | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Tumover (Sit<br>Down Restaurant) | Hotel                 | Quality<br>Restaurant | Regional<br>Shopping Center | Total    |

### 8.0 Waste Detail

## 8.1 Mitigation Measures Waste

Page 41 of 44

Date: 1/6/2021 1:52 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

#### Category/Year

Page 42 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/6/2021 1:52 PM

8.2 Waste by Land Use

#### Unmitigated

|                   |            |                        |                        |                            |                                        | _       |                       |                             |          |
|-------------------|------------|------------------------|------------------------|----------------------------|----------------------------------------|---------|-----------------------|-----------------------------|----------|
| C02e              |            | 5.7834                 | 225.5513               | 21.0464                    | 215.4430                               | 13.7694 | 3.6712                | 29.5706                     | 514.8354 |
| N20               | МТУл       | 0.000.0                | 0.0000                 | 0.000.0                    | 0.0000                                 | 0.0000  | 0.000.0               | 0.0000                      | 0.0000   |
| CH4               | <b>L</b> W | 0.1380                 | 5.3804                 | 0.5021                     | 5.1393                                 | 0.3285  | 0.0876                | 0.7054                      | 12.2811  |
| Total CO2         |            | 2.3344                 | 91.0415                | 8.4952                     | 86.9613                                | 5.5579  | 1.4818                | 11.9359                     | 207.8079 |
| Waste<br>Disposed | tons       | 11.5                   | 448.5                  | 41.85                      | 428.4                                  | 27.38   | 7.3                   | 58.8                        |          |
|                   | Land Use   | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | ligh Turnover (Sit<br>Down Restaurant) | Hotel   | Quality<br>Restaurant | Regional<br>Shopping Center | Total    |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 43 of 44

Date: 1/6/2021 1:52 PM

### 8.2 Waste by Land Use

#### Mitigated

| C02e              |          | 5.7834                 | 225.5513               | 21.0464                    | 215.4430                               | 13.7694 | 3.6712                | 29.5706                     | 514.8354 |
|-------------------|----------|------------------------|------------------------|----------------------------|----------------------------------------|---------|-----------------------|-----------------------------|----------|
| N2O               | MT/yr    | 0.0000                 | 0.0000                 | 0.0000                     | 0.0000                                 | 0.0000  | 0.0000                | 0.0000                      | 0.0000   |
| CH4               | MI       | 0.1380                 | 5.3804                 | 0.5021                     | 5.1393                                 | 0.3285  | 0.0876                | 0.7054                      | 12.2811  |
| Total CO2         |          | 2.3344                 | 91.0415                | 8.4952                     | 86.9613                                | 5.5579  | 1.4818                | 11.9359                     | 207.8079 |
| Waste<br>Disposed | tons     | 11.5                   | 448.5                  | 41.85                      | 428.4                                  | 27.38   | 7.3                   | 58.8                        |          |
|                   | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel   | Quality<br>Restaurant | Regional<br>Shopping Center | Total    |

### 9.0 Operational Offroad

| ı |                    |                                                                  |   |
|---|--------------------|------------------------------------------------------------------|---|
| ı | De                 |                                                                  |   |
| I | _                  |                                                                  |   |
| ı | Fue                |                                                                  |   |
| ı |                    |                                                                  |   |
| ı |                    | 30<br>(7)                                                        |   |
| I | F                  |                                                                  |   |
| I | Load Factor        |                                                                  |   |
| ı | A                  |                                                                  |   |
| ı | Loa                |                                                                  |   |
| ı |                    | 1.1<br>192<br>3.6                                                |   |
| ı |                    |                                                                  |   |
| I |                    |                                                                  |   |
| I | ĕ.                 | 14                                                               |   |
| I | rse Pow            |                                                                  |   |
| ı | Horse              |                                                                  |   |
| I | Ξ                  |                                                                  |   |
| ı |                    |                                                                  | l |
| Ì | 200                |                                                                  |   |
| ı | Ž.                 |                                                                  |   |
| ı | ਙ                  |                                                                  |   |
| I | ₹e                 | , i<br>*****                                                     |   |
| I | ays                |                                                                  |   |
| l | Da                 |                                                                  | I |
| I |                    | 1.56                                                             | ŀ |
|   |                    | 10.00                                                            | ı |
| ŀ | (3)<br>(3)         |                                                                  |   |
| ŀ |                    |                                                                  |   |
|   | <u> </u>           |                                                                  |   |
|   | //Day              | 그는 하시 하시하다 그 아이                                                  |   |
|   | ours/Day           |                                                                  |   |
|   | Hours/Day          |                                                                  |   |
|   | er Hours/Day       |                                                                  |   |
|   | mber Hours/Day     |                                                                  |   |
|   | Number Hours/Day   |                                                                  |   |
|   | Number Hours/Day   |                                                                  |   |
|   | Number   Hours/Day |                                                                  |   |
|   | Number Hours/Day   |                                                                  |   |
|   | Numbe              |                                                                  |   |
|   | Number Hours/Day   | 나 전쟁하게 하는 것은 사람들이 살아 있다면 하는데 |   |
|   | Numbe              | 나 전쟁하게 하는 것은 사람들이 살아 있다면 하는데 |   |
|   | Numbe              | 나 전쟁하게 하는 것은 사람들이 살아 있다면 하는데 |   |
|   | Numbe              |                                                                  |   |
|   | nent Type Numbe    | 나 전쟁하게 하는 것은 사람들이 살아 있다면 하는데 |   |
|   | Equipment Type     | 나 전쟁하게 하는 것은 사람들이 살아 있다면 하는데 |   |
|   | Equipment Type     | 나 전쟁하게 하는 것은 사람들이 살아 있다면 하는데 |   |
|   | Equipment Type     | 나 전쟁하게 하는 것은 사람들이 살아 있다면 하는데 |   |

### 10.0 Stationary Equipment

## Fire Pumps and Emergency Generators

| ı  | 9              | <u>,</u> | I      |
|----|----------------|----------|--------|
| ı  | al Tyna        |          |        |
| I  | 1              | 3        | 4      |
|    | Ī              |          | 1      |
| ŀ  |                | e<br>Xi  | 4      |
| ŀ  | 2              |          | 1      |
| ı  | T,             |          | 400.00 |
| ı  | TI C           | ,        | 1      |
| ı  | č              | )<br>}   | î      |
| ı  | peo.]          |          | ı      |
| ľ  | V.             |          | 1      |
| ı  |                |          | I      |
|    | W              |          |        |
| ı  | e Powe         |          |        |
|    | ě              | ,        |        |
| ı  | Ţ              |          | 1      |
| I  | Horse Po       |          |        |
| ſ  | · · .          | ٧,       | 1      |
| I  | ; ;<br>; ;     |          | ı      |
| I. | Fa             | i        | 1      |
| 1  | ξ              |          | ı      |
|    | 5              | -1       | ı      |
| ı  |                |          | ı      |
| ı  |                | ji.<br>N | ı      |
| ŀ  |                |          | 1      |
| ı  |                |          | ı      |
| ı  | 2              |          | ı      |
| ľ  | Ç              |          | I      |
| ı  | 5              |          |        |
|    | 1              |          |        |
| I  |                |          |        |
| ŀ  |                | Ċ,       | ۱      |
| ı  | Number         |          |        |
| ŀ  | Number         |          | l      |
| ł  | Ĕ              |          | I      |
|    | Z              |          | ı      |
| ı  |                |          | ı      |
| ŀ  |                | 1        | ١      |
|    |                |          | ı      |
| I  |                |          | ı      |
| 1  | . 5<br>(2)     |          | l      |
| ľ  | Š              |          |        |
|    | Equipment Type |          |        |
|    | me             | Š.       | ١      |
|    | Edulp          | ,<br>    | I      |
|    | Ш              |          | ı      |
|    |                | : :      | I      |
| 1  |                |          | l      |
| 1  |                |          |        |
| Ŀ  | 3,             |          |        |
| _  |                |          |        |

Page 44 of 44

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

#### Boilers

| Fuel Type    |            |
|--------------|------------|
| g            |            |
| Boiler Ratin |            |
| Input√ear    |            |
| Heat Input   |            |
| put/Day      |            |
| Heat In      |            |
| Number       |            |
|              |            |
| ent Type     | Touring    |
| Equipm       | Defined E. |
|              | lear       |

### **User Defined Equipment**

| 1.00           |  |
|----------------|--|
|                |  |
|                |  |
|                |  |
|                |  |
| -              |  |
| ×              |  |
|                |  |
| : '=           |  |
| 5              |  |
| ラ              |  |
| Number         |  |
| 9 1            |  |
|                |  |
|                |  |
| 1.4.13         |  |
| ~              |  |
|                |  |
| 77.5           |  |
| 100            |  |
| 100            |  |
|                |  |
|                |  |
| 1              |  |
| 1.0            |  |
|                |  |
| 1470           |  |
| 1 ( )          |  |
| an .           |  |
| . •            |  |
|                |  |
| 9              |  |
| 울              |  |
| Ţ              |  |
| ıt Typ         |  |
| int Typ        |  |
| ent Typ        |  |
| ment Typ       |  |
| oment Typ      |  |
| ipment Typ     |  |
| uipment Typ    |  |
| quipment Typ   |  |
| Equipment Typ  |  |
| Equipment Typ  |  |
| Equipment Typ  |  |
| Equipment Typ  |  |
| Equipment Type |  |

### 11.0 Vegetation

Date: 1/6/2021 1:52 PM

Date: 1/6/2021 1:54 PM Page 1 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

### Village South Specific Plan (Proposed) Los Angeles-South Coast County, Summer

### 1.0 Project Characteristics

### 1.1 Land Usage

| Land Uses                           | Size   | Metric        | Lot Acreage | Lot Acreage Floor Surface Area Population | Population |
|-------------------------------------|--------|---------------|-------------|-------------------------------------------|------------|
| General Office Building             | 45.00  | 1000sqft      | 1.03        | 45,000.00                                 | 0          |
| High Turnover (Sit Down Restaurant) | 36.00  | 1000sqft      | 0.83        | 36,000.00                                 | 0          |
| Hotel                               | 50.00  | Room          | 1.67        | 72,600.00                                 | 0          |
| Quality Restaurant                  | 8.00   | 1000sqft      | 0.18        | 8,000.00                                  | 0          |
| Apartments Low Rise                 | 25.00  | Dwelling Unit | 1.56        | 25,000.00                                 | 72         |
| Apartments Mid Rise                 | 975.00 | Dwelling Unit | 25.66       | 975,000.00                                | 2789       |
| Regional Shopping Center            | 56.00  | 1000sqft      | 1.29        | 56,000.00                                 | 0          |

## 1.2 Other Project Characteristics

| Urbanization<br>Climate Zone | Urban<br>9                 | Wind Speed (m/s)           | 2.2   | Precipitation Freq (Days) Operational Year | 33 2028 |
|------------------------------|----------------------------|----------------------------|-------|--------------------------------------------|---------|
| Utility Company              | Southern California Edison | 5                          |       |                                            |         |
| CO2 Intensity (Ib/MWhr)      | 702.44                     | CH4 Intensity<br>(Ib/MWhr) | 0.029 | N2O Intensity<br>(Ib/MWhr)                 | 900.0   |

# 1.3 User Entered Comments & Non-Default Data

Date: 1/6/2021 1:54 PM Page 2 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

Construction Phase - See SWAPE comment regarding individual construction phase lengths.

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use -

Construction Off-road Equipment Mitigation - See SWAPE comment on construction-related mitigation.

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

| Lable Name      | Column Name       | Barren Darameter | Now Well-Wash |
|-----------------|-------------------|------------------|---------------|
|                 |                   |                  | New value     |
| tblFireplaces   | FireplaceWoodMass | 1,019.20         | 0.00          |
| tblFireplaces   | FireplaceWoodMass | 1,019.20         | 00.0          |
| tblFireplaces   | NumberWood        | 1.25             | 00.0          |
| tblFireplaces   | NumberWood        | 48.75            | 0.00          |
| tblVehicleTrips | ST_TR             | 7.16             | 6.17          |
| tblVehicleTrips | ST_TR             | 6.39             | 3.87          |
| tblVehideTrips  | ST_TR             | 2.46             | 1.39          |
| tblVehicleTrips | ST_TR             | 158.37           | 79.82         |
| tblVehicleTrips | ST_TR             | 8.19             | 3.75          |
| tblVehicleTrips | ST_TR             | 94,36            | 63.99         |
| tblVehideTrips  | ST_TR             | 49.97            | 10.74         |
| tblVehicleTrips | SU_TR             | 6.07             | 6.16          |
| tblVehicleTrips | SU_TR             | 5.86             | 4.18          |
| tblVehicleTrips | SU_TR             | 1.05             | 0.69          |
| tblVehicleTrips | su_TR             | 131.84           | 78.27         |

Page 3 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

| 3.20            | 57.65           | 6.39            | 5.83            | 4.13            | 6.41            | 65.80           | 3.84            | 62.64           | 9.43            | 0.00            | 0.00            | 0.00               | 0.00               | 0.00             | 00.0             | 0.00              | 0.00              |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------------------|------------------|------------------|-------------------|-------------------|
| 5.95            | 72.16           | 25.24           | 6.59            | 6.65            | 11.03           | 127.15          | 8.17            | 89.95           | 42.70           | 1.25            | 48.75           | 1.25               | 48.75              | 25.00            | 25.00            | 99660             | 99.666            |
| SU_TR           | SU_TR           | SU_TR           | WD_TR           | NumberCatalytic | NumberCatalytic | NumberNoncatalytic | NumberNoncatalytic | WoodstoveDayYear | WoodstoveDayYear | WoodstoveWoodMass | WoodstoveWoodMass |
| tblVehicleTrips | tblWoodstoves   | tblWoodstoves   | tblWoodstoves      | tblWoodstoves      | tblWoodstoves    | tblWoodstoves    | tblWoodstoves     | tblWoodstoves     |

2.0 Emissions Summary

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Page 4 of 35

Date: 1/6/2021 1:54 PM

2.1 Overall Construction (Maximum Daily Emission)

### **Unmitigated Construction**

| CO2e                         |              | 6,283.535<br>2                      | 15,278.52<br>88              | 14,833.15<br>21              | 2,379.342                | 15,278.52<br>88              |
|------------------------------|--------------|-------------------------------------|------------------------------|------------------------------|--------------------------|------------------------------|
| Nzo                          |              | 0.0000                              | 0.0000                       | 0.0000                       | 0.0000                   | 0.000.0                      |
| СНД                          | (b/day       | 1.9495                              | 1.9503                       | 1.0250                       | 0.7177                   | 1.9503                       |
| Total CO2                    | y <b>q</b> ı | 6,234.797<br>4                      | 15,251.56 15,251.56<br>74 74 | 14,807.52 14,807.52<br>69 69 | 2,361.398 2,361.398<br>9 | 15,251.56<br>74              |
| Bio- CO2 NBio- CO2 Total CO2 |              | 0.0000 6,234.797 6,234.797<br>4 4 4 | 15,251.56<br>74              | 14,807.52<br>69              | 2,361.398<br>9           | 15,251.56 15,251.56<br>74 74 |
| Bio- CO2                     |              | 0.0000                              | 0.0000                       | 0.0000                       | 0.0000                   | 0.000                        |
| PM2.5<br>Total               |              | 11.8664                             | 5.1615                       | 3.3702                       | 0.5476                   | 11.8664                      |
| Exhaust<br>PM2.5             |              | 1.8824                              | 1.5057                       | 0.7322                       | 0.4322                   | 1.8824                       |
| Fugitive<br>PM2.5            |              | 9.9840                              | 3.6558                       | 2.6381                       | 0.4743                   | 9.9840                       |
| PM10<br>Total                |              | 20.3135                             | 10.7727                      | 10.6482                      | 1.8628                   | 20.3135                      |
| Exhaust<br>PM10              | lb/day       | 2.0461                              | 1.6366                       | 0.7794                       | 0.4698                   | 2.0461                       |
| Fugitive<br>PM10             | lb/c         | 18.2675                             | 9.8688                       | 9.8688                       | 1.7884                   | 18.2675                      |
| S02                          |              | 0.0643                              | 0.1517                       | 0.1472                       | 0.0244                   | 0.1517                       |
| တ                            |              | 31.6840                             | 49.5629                      | 46.7567                      | 15.1043                  | 49.5629                      |
| NOX                          |              | 4.2769 46.4588 31.6840 0.0643       | 38.8967 49.5629              | 26.3317 46.7567              | 9.5575                   | 237.1630 46.4588 49.5629     |
| ROG                          |              | 4.2769                              | 5.3304                       | 4.8957                       | 237.1630 9.5575          | 237.1630                     |
|                              | Year         | 2021                                | 2022                         | 2023                         | 2024                     | Maximum                      |

Date: 1/6/2021 1:54 PM Page 5 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

2.1 Overall Construction (Maximum Daily Emission)

### Mitigated Construction

| C02e                       |        | 6,283.535                     | 15,278.52<br>88              | 14,833.15<br>20 | 2,379.342       | 15,278.52<br>88 |
|----------------------------|--------|-------------------------------|------------------------------|-----------------|-----------------|-----------------|
| N20                        |        | 0.0000                        | 0.000                        | 0.0000          | 0.0000          | 0.0000          |
| CH4                        | lay    | 1.9495                        | 1.9503                       | 1.0250          | 0.7177          | 1.9503          |
| Total CO2                  | Ib/day | 6,234.797<br>4                | 15,251.56<br>74              | 14,807.52<br>69 | 2,361.398<br>9  | 15,251.56<br>74 |
| Bio-CO2 NBio-CO2 Total CO2 |        | 6,234.797 6,234.797<br>4 4    | 15,251.56 15,251.56<br>74 74 | 14,807.52<br>69 | 2,361.398<br>9  | 15,251.56<br>74 |
| Віс- СО2                   |        | 0.0000                        | 0.0000                       | 0.0000          | 0.0000          | 0.0000          |
| PM2.5<br>Total             |        | 11.8664                       | 5.1615                       | 3.3702          | 0.5476          | 11.8664         |
| Exhaust<br>PM2.5           |        | 1.8824                        | 1.5057                       | 0.7322          | 0.4322          | 1.8824          |
| Fugitive<br>PM2.5          |        | 9.9840                        | 3.6558                       | 2.6381          | 0.4743          | 9.9840          |
| PM10<br>Total              |        | 20.3135                       | 10.7727                      | 10.6482         | 1.8628          | 20.3135         |
| Exhaust<br>PM10            | lay    | 2.0461                        | 1.6366                       | 0.7794          | 0.4698          | 2.0461          |
| Fugitive<br>PM10           | lb/day | 18.2675                       | 9.8688                       | 9.8688          | 1.7884          | 18.2675         |
| S02                        |        | 0.0643                        | 0.1517                       | 0.1472          | 0.0244          | 0.1517          |
| 03                         |        | 31.6840                       | 49.5629                      | 26.3317 46.7567 | 15.1043         | 49.5629         |
| NOx                        |        | 4.2769 46.4588 31.6840 0.0643 | 38.8967                      | 26.3317         | 9.5575          | 46.4588         |
| ROG                        |        | 4.2769                        | 5.3304                       | 4.8957          | 237.1630 9.5575 | 237.1630        |
|                            | Year   | 2021                          | 2022                         | 2023            | 2024            | Maximum         |

| ٦                                        |                      |
|------------------------------------------|----------------------|
| C02e                                     | 0.00                 |
| N20                                      | 0.00                 |
| CH4                                      | 0.00                 |
| Total CO2                                | 0.00                 |
| Bio- CO2 NBio-CO2 Total CO2 CH4          | 0.00                 |
| Bio- C02                                 | 00.0                 |
| PM2.5<br>Total                           | 00.0                 |
| Exhaust<br>PM2.5                         | 0.00                 |
| Fugitive<br>PM2.5                        | 00'0                 |
| PM10<br>Total                            | 0.00                 |
| Fugitive Exhaust PM10<br>PM10 PM10 Total | 0.00                 |
| JE 13.2%                                 | 00'0                 |
| 203                                      | 00.0                 |
| 00                                       | 0.00                 |
| NOX                                      | 00.0                 |
| ROG                                      | 0.00                 |
|                                          | Percent<br>Reduction |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

2.2 Overall Operational Unmitigated Operational

| C02e                         |          | 0.3300 18,259.11                           | 8,405.638<br>7                        | 50,361.12<br>08              | 77,025.87<br>86                     |
|------------------------------|----------|--------------------------------------------|---------------------------------------|------------------------------|-------------------------------------|
| NZO                          |          | 0.3300                                     | 0.1532                                |                              | 0.4832 77,025.87<br>86              |
| CH4                          | Are      | 0.4874                                     | 0.1602                                | 2.1807                       | 2.8282                              |
| Total CO2                    | lb/day   | 18,148.59<br>50                            | 8,355.983<br>2                        |                              | 76,811.18<br>16                     |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000 18,148.59 18,148.59 0.4874<br>50 50 | 8,355,983 8,355,983 0.1602<br>2 2     | 50,306.60 50,306.60<br>34 34 | 0.0000 76,811.18 76,811.18<br>16 16 |
| Bio-CO2                      |          | 0.0000                                     | · · · · · · · · · · · · · · · · · · · |                              | 0.000                               |
| PM2.5<br>Total               |          | 1.5974                                     | 0.5292                                | 12.6070                      | 14.7336                             |
| Exhaust<br>PM2.5             |          | 1.5974                                     | 0.5292                                | 0.3119                       | 2.4385                              |
| Fugitive<br>PMZ.5:           |          |                                            | <b></b>                               | 12.2950                      | 48.4217 12.2950                     |
| PM10<br>Total                |          | 1.5974                                     | 0.5292                                | 46.2951                      | 48.4217                             |
| Exhaust<br>PM10              | lay      | 1.5974                                     | 0.5292                                | 0.3360                       | 2.4626                              |
| Fugitive<br>PM10             | lb/day   |                                            |                                       | 45.9592                      | 45.9592                             |
| S02                          |          | 0.0944                                     | 0.0418                                | 0.4917                       | 0.6278                              |
| တ                            |          | 88.4430                                    | 4.2573                                | 114.8495                     | 207.5497                            |
| XON                          |          | 30.5020 15.0496 88.4430 0.0944             | 6.7462                                | 45.4304 114.8495 0.4917      | 67.2262 207.5497                    |
| ROG                          |          | 30.5020                                    | 0.7660                                | 9.8489                       | 41.1168                             |
|                              | Category | Area                                       | Energy                                | Mobile                       | Total                               |

### Mitigated Operational

|                                                      |          |                                                                |                            |                                     | ······································ |
|------------------------------------------------------|----------|----------------------------------------------------------------|----------------------------|-------------------------------------|----------------------------------------|
| CO2e                                                 |          | 18,259.11<br>92                                                | 8,405.638<br>7             | 50,361.12<br>08                     | 77,025.87<br>86                        |
| NZO                                                  |          | 0.3300                                                         | 0.1532                     | i<br> <br> <br> <br> <br> <br> <br> | 0.4832                                 |
| CH4                                                  | biday    | 0.4874                                                         | 0.1602                     | 2.1807                              | 2.8282                                 |
| Total CO2                                            | )/gl     | 18,148.59<br>50                                                | 8,355.983                  | 50,306.60<br>34                     | 76,811.18<br>16                        |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O                   |          | 0.0000 18,148.59 18,148.59 0.4874 0.3300 18,259.11<br>50 50 92 | 8,355,983 8,355,983<br>2 2 | 50,306.60 50,306.60<br>34 34        | 0.0000 76,811.18 76,811.18<br>16 16    |
| Bio-CO2                                              |          | 0.0000                                                         |                            |                                     | 0.0000                                 |
| PM2.5<br>Total                                       |          | 1.5974                                                         | 0.5292                     | 12.6070                             | 14.7336                                |
| Exhaust<br>PM2.5                                     |          | 1.5974                                                         | 0.5292                     | 0.3119                              | 2.4385                                 |
| Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |          |                                                                |                            | 12.2950                             | 12.2950                                |
| PM10<br>Total                                        |          | 1.5974                                                         | 0.5292                     | 46.2951                             | 48.4217                                |
| Exhaust<br>PM10                                      | lay      | 1.5974                                                         | 0.5292                     | 0.3360                              | 2.4626 48.4217                         |
| Fugitive<br>PM10                                     | lb/day   |                                                                |                            | 45.9592                             | 45.9592                                |
| S02                                                  |          | 0.0944                                                         | 0.0418                     | 0.4917                              | 0.6278                                 |
| 00                                                   |          | 88.4430                                                        | 4.2573                     | 114.8495                            | 207.5497                               |
| ROG NOX CO                                           |          | 30.5020 15.0496 88.4430 0.0944                                 | 0.7660 6.7462              | 9.8489 45.4304 114.8495 0.4917      | 41.1168 67.2262 207.5497               |
| ROG                                                  |          | 30.5020                                                        | 0.7660                     | 9.8489                              | 41.1168                                |
|                                                      | Category | Area                                                           | Energy                     | Mobile                              | Total                                  |

Page 7 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

| C02e              | 0.00                 |
|-------------------|----------------------|
| NZO               | 0.00                 |
| CH4               | 0.00                 |
| Bio-CO2 Total CO2 | 0.00                 |
| NBio-c02          | 00'0                 |
| Bio- CO2 NB       | 0.00                 |
| PM2.5<br>Total    | 0.00                 |
| Exhaust<br>PM2.5  | 00'0                 |
| Fugitive<br>PM2.5 | 0.00                 |
| PM10<br>Total     | 0.00                 |
| Exhaust<br>PM10   | 0.00                 |
| Fugitive<br>PM10  | 0.00                 |
| <b>SO2</b>        | 0.00                 |
| ဝ၁                | 0.00                 |
| NOX               | 0.00                 |
| ROG               | 00'0                 |
|                   | Percent<br>Reduction |

### 3.0 Construction Detail

### **Construction Phase**

| Phase<br>Number | Phase Name            | Phase Type            | Start Date | End-Date Num Days Num Days<br>Week | Num Days<br>Week | Num Days | Phase Description                       |
|-----------------|-----------------------|-----------------------|------------|------------------------------------|------------------|----------|-----------------------------------------|
| <del></del>     | Demolition            | Demolition            | 9/1/2021   | 10/12/2021                         | 5                | 30       |                                         |
| 2               | Site Preparation      | Site Preparation      | 10/13/2021 | 11/9/2021                          | 5                | 20       | 1                                       |
| က               | Grading               | Grading               | 11/10/2021 | 1/11/2022                          | 5                | 45       | ) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; |
| 4               | Building Construction | Building Construction |            | 12/12/2023                         | 5                | 200      |                                         |
| 5               | Paving                | Paving                | 12/13/2023 | 1/30/2024                          | 5                | 35       |                                         |
| 9               | Architectural Coating | Architectural Coating | 1/31/2024  | 3/19/2024                          | 5                | 35       |                                         |

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

### OffRoad Equipment

Date: 1/6/2021 1:54 PM Page 8 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

| Phase Name            | Offroad Equipment Type    | Amount                                         | Usage Hours | Horse Power | Load Factor |
|-----------------------|---------------------------|------------------------------------------------|-------------|-------------|-------------|
| Demolition            | Concrete/Industrial Saws  | <del>1</del>                                   | 8.00        | 81          | 0.73        |
| Demolition            | Excavators                | 8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 8.00        | 158         | 0.38        |
| Demolition            | Rubber Tired Dozers       | 2                                              | 8.00        | 247         | 0.40        |
| Site Preparation      | Rubber Tired Dozers       | ε                                              | 8.00        | 247         | 0.40        |
| Site Preparation      | Tractors/Loaders/Backhoes | 4                                              | 8.00        | 97          | 0.37        |
| Grading               | Excavators                | 2                                              | 8.00        | 158         | 0.38        |
| Grading               | Graders                   |                                                | 8.00        | 187         | 0.41        |
| Grading               | Rubber Tired Dozers       |                                                | 8.00        | 247         | 0.40        |
| Grading               | Scrapers                  | 2                                              | 8.00        | 367         | 0.48        |
| Grading               | Tractors/Loaders/Backhoes | 2                                              | 8.00        | 16          | 0.37        |
| Building Construction | Cranes                    |                                                | 7.00        | 231         | 0.29        |
| Building Construction | Forklifts                 | ဇ                                              | 8.00        | 89          | 0.20        |
| Building Construction | Generator Sets            |                                                | 8.00        | 84          | 0.74        |
| Building Construction | Tractors/Loaders/Backhoes | e                                              | 7.00        | 16          | 0.37        |
| Building Construction | Welders                   |                                                | 8.00        | 46          | 0.45        |
| Paving                | Pavers                    | 2                                              | 8.00        | 130         | 0.42        |
| Paving                | Paving Equipment          | 2                                              | 8.00        | 132         | 0.36        |
| Paving                | Rollers                   | 2                                              | 8.00        | 80          | 0.38        |
| Architectural Coating | Air Compressors           | 1                                              | 9.00        | 78          | 0.48        |

**Trips and VMT** 

Page 9 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

| Phase Name            | Phase Name Offroad Equipment Worker Trip Count Number | Worker Trip<br>Number |        | Hauling Trip<br>Number | Worker Trip<br>Length | Vendor Trip<br>Length | Hauling Trip<br>Length | /endor Trip         Hauling Trip         Worker Vehicle           Number         Length         Length         Class | Vehide Class Vehicle Class | Hauling<br>Vehicle Class |
|-----------------------|-------------------------------------------------------|-----------------------|--------|------------------------|-----------------------|-----------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|
| Demolition            | 9                                                     | 15.00                 | 00.00  | 458.00                 | 14.70                 | 6.90                  |                        | 20.00 LD_Mix                                                                                                         | HDT_Mix                    | HHDT                     |
| Site Preparation      | 7                                                     | 18.00                 | 00.00  | 0                      | 14.70                 | 6.90                  |                        | 20.00 LD_Mix                                                                                                         | HDT_Mix                    | HHDT                     |
| Grading               | 8                                                     | 20.00                 | 00.0   | 00.0                   | 14.70                 | 6.90                  | !<br>!<br>!            | 20.00 LD_Mix                                                                                                         | HDT_Mix                    | HHDT                     |
| Building Construction | 6                                                     | 801.00                | 143.00 | 00.0                   | 14.70                 | 6.90                  |                        | 20.00 LD_Mix                                                                                                         | HDT_Mix                    | HHDT                     |
| Paving                | 9                                                     | 15.00                 | 00.0   | 0.00                   | 14.70                 | 06:9                  |                        | 20.00 LD_Mix                                                                                                         | HDT_Mix                    | ННОТ                     |
| Architectural Coating |                                                       | 160.00                | 00.00  | 0.00                   | 14.70                 | 6.90                  | 20.00 LD               | 20.00 LD_Mix                                                                                                         | HDT_Mix                    | HHDT                     |

# 3.1 Mitigation Measures Construction

3.2 Demolition - 2021

| C02e                                       |          | 0.000                              | 3,774.317                  | 3,774.317<br>4             |
|--------------------------------------------|----------|------------------------------------|----------------------------|----------------------------|
|                                            |          |                                    |                            |                            |
| CH4                                        | lay      |                                    | 1.0549                     | 1.0549                     |
| Total CO2                                  | lb/day   | 0.0000                             | 3,747.9 <b>44</b><br>9     | 3,747.944 3,747.944<br>9 9 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O         |          |                                    | 3,747.944 3,747.944<br>9 9 | 3,747.944<br>9             |
| Bio-CO2                                    |          |                                    |                            |                            |
| PM2.5<br>Total                             |          | 0.5008                             | 1.4411                     | 1.9419                     |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |          | 0.0000 3.3074 0.5008 0.0000 0.5008 | 1.4411                     | 1.4411                     |
| Fugitive<br>PM2.5                          |          | 0.5008                             |                            | 0.5008                     |
| PM10<br>Total                              |          | 3.3074                             | 1.5513                     | 1.5513 4.8588              |
| Exhaust<br>PM10                            | ilay     |                                    | 1.5513                     |                            |
| Fugitive<br>PM10                           | lb/day   | 3.3074                             |                            | 3.3074                     |
| S02                                        |          |                                    | 0.0388                     | 0.0388                     |
| 03                                         |          |                                    | 31.4407 21.5650 0.0388     | 21.5650                    |
| ROG NOx                                    |          |                                    | 31.4407                    | 3.1651 31.4407 21.5650     |
| ROG                                        |          |                                    | 3.1651                     | 3.1651                     |
|                                            | Category | Fugitive Dust                      | Off-Road                   | Total                      |

Page 10 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.2 Demolition - 2021

# **Unmitigated Construction Off-Site**

| 4 N20 C02e                       |          | 77 1,294.433                    | 00000                | 0e-<br>3                   | 27 1,465.375               |
|----------------------------------|----------|---------------------------------|----------------------|----------------------------|----------------------------|
| Bio- CO2 NBio- CO2 Total CO2 CH4 | lb/day   | 1,292.241 1,292.241 0.0877<br>3 | 0000.0 0.0000 0.0000 | 170.8155 170.8155 5.0300e- | 1,463.056 1,463.056 0.0927 |
| 5. Bio- CO2 NBio-                |          |                                 | 0.000.0              |                            |                            |
| Exhaust PM2.5 Bi                 |          | 0.0120 0.0852                   | 0.0000 0.0000        | 1,2500e- 0,0457<br>003     | 0.0133 0.1309              |
| PM10 Fugitive<br>Total PM2.5     |          | 2795 0.0732                     | 0.000.0 0.000.0      | 0.1690 0.0445              | 0.4485 0.1176              |
| Exhaust<br>PM10                  | Ib⁄ɗay   | .2669 0.0126 0.2795             | 0.0000               | 1.3500e- 0.1<br>003        | 0.0139                     |
| Fugitive<br>PM10                 | qı       | 0.2669                          | 0.0000               | 0.1677                     | 0.4346                     |
| co   sos                         |          | 0.0119                          | 0.0000               | 1.7100e-<br>003            | 0.0136                     |
|                                  |          | 0.9602                          | 0.0000               | 0.6042                     | 4.1394 1.5644              |
| ×ON                              |          | 0.1273 4.0952 0.9602 0.0119     | 0.0000               | 0.0442                     |                            |
| ROG                              |          | 0.1273                          | 0.0000               | 0.0643                     | 0.1916                     |
|                                  | Category | Hauling                         | Vendor               | Worker                     | Total                      |

| 112 M                                  |          |               |                                       | ,                                 |
|----------------------------------------|----------|---------------|---------------------------------------|-----------------------------------|
| CO2e                                   |          | 0.0000        | 3,774.317<br>4                        | 3,774.317<br>4                    |
| NZO                                    |          |               | • • • • • • • • • • • • • • • • • • • |                                   |
| 2 2 2                                  | X        |               | 1.0549                                | 1.0549                            |
| otal CO2                               | /lib/day | 0.0000        | ,747.944<br>9                         |                                   |
| IBio- CO2 1                            |          |               | 0.0000 3,747.944 3,747.944<br>9 9     | 0.0000 3,747.944 3,747.944<br>9 9 |
| Bio- CO2   NBio- CO2   Total CO2   CH4 |          |               | 0.000.0                               | 0.0000                            |
| PM2:5<br>Total                         |          | 0.5008        | 1.4411                                | 1.9419                            |
| Exhaust<br>PM2.5                       |          | 0.0000 0.5008 | 1.4411                                | 1.4411                            |
| Fugitive Exhaust<br>PM2.5 PM2.5        |          | 0.5008        |                                       | 0.5008                            |
| PM10<br>Total                          |          | 0.0000 3.3074 | 1.5513                                |                                   |
| Exhaust<br>PM10                        | ay       | 0.000.0       | 1.5513                                | 1.5513 4.8588                     |
| Fugitive Exhaust<br>PM10 PM10          | lb/day   | 3.3074        |                                       | 3.3074                            |
| S02                                    |          |               | 0.0388                                | 0.0388                            |
| 8                                      |          |               |                                       |                                   |
| ROG NOx                                |          |               | 31.4407 21.5650                       | 3.1651 31.4407 21.5650            |
| ROG                                    |          |               | 3.1651                                | 3.1651                            |
|                                        | Category | Fugitive Dust | Off-Road                              | Total                             |

Page 11 of 35 CalEEMod Version: CalEEMod.2016.3.2

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.2 Demolition - 2021

### Mitigated Construction Off-Site

| C02e                         |          | 1,294.433<br>7             | 0.0000                                    | 170.9413                        | 1,465.375<br>0             |
|------------------------------|----------|----------------------------|-------------------------------------------|---------------------------------|----------------------------|
| NZO                          |          |                            | <br>                                      | <br>                            |                            |
| CH4                          | lay      | 0.0877                     | 0.0000                                    | 5.0300e-<br>003                 | 0.0927                     |
| Total CO2                    | lb/day   | 1,292.241 1,292.241 0.0877 | 0.0000                                    | 170.8155                        | 1,463.056<br>8             |
| Bio- CO2 NBio- CO2 Total CO2 |          | 1,292.241<br>3             | 0.000.0                                   | 170.8155                        | 1,463.056 1,463.056<br>8 8 |
| Bio- CO2                     |          |                            | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>4 | :<br>:<br>:<br>:<br>:<br>:<br>: |                            |
| PM2.5<br>Total               |          | 0.0852                     | 0.0000                                    | 0.0457                          | 0.1309                     |
| Exhaust<br>PM2.5             |          | 0.0120                     | 0.0000                                    | 1.2500e-<br>003                 | 0.0133                     |
| Fugitive<br>PM2.5            |          | 0.0732                     | 0.0000                                    | 0.0445                          | 0.1176                     |
| PM10.<br>Total               |          | 0.2795                     | 0.0000                                    | 0.1690                          | 0.4485                     |
| Exhaust<br>PM10              | lb/day   | 0.0126                     | 0.0000                                    | 1.3500e-<br>003                 | 0.0139                     |
| Fugitive<br>PM10             | /qt      | 0.2669                     | 0.0000                                    | 0.1677                          | 0.4346                     |
| S02                          |          | 0.0119                     | 0.0000                                    | 0.6042 1.7100e-<br>003          | 0.0136                     |
| 03                           |          |                            | 0.0000                                    | 0.6042                          | 4.1394 1.5644              |
| ROG NOx                      |          | 0.1273 4.0952              | 0.0000                                    | 0.0442                          | 4.1394                     |
| ROG                          |          | 0.1273                     | 0.0000                                    | 0.0643                          | 0.1916                     |
|                              | Category | Hauling                    | Vendor                                    | Worker                          | Total                      |

#### 3.3 Site Preparation - 2021

|                                                               |          | ٥                     | 57                                       | 25                                    |
|---------------------------------------------------------------|----------|-----------------------|------------------------------------------|---------------------------------------|
| CO2e                                                          |          | 0.0000                | 3,715.457                                | 3,715.457<br>3                        |
| NZO                                                           |          |                       | ,<br> <br> <br> <br> <br> <br> <br> <br> |                                       |
| CH4                                                           | \hat{e}  |                       | 1.1920                                   | 1.1920                                |
| Total CO2                                                     | lb/day   | 0.000.0               | 3,685.656<br>9                           | 3,685.656<br>9                        |
| NBio-CO2                                                      |          |                       | 3,685,656 3,685.656 9<br>9               | 3,685.656 3,685.656<br>9              |
| Bio-CO2 NBio-CO2 Total CO2 CH4                                |          |                       |                                          |                                       |
| PM2.5<br>Total                                                |          | 9.9307                | 1.8809                                   | 11.8116                               |
| Fugitive Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |          | 0.000.0               | 1.8809                                   | 1.8809                                |
| Fugitive<br>PM2.5                                             |          | 0.0000 18.0663 9.9307 |                                          | 9.9307                                |
| PM10<br>Total                                                 |          | 18.0663               | 2.0445                                   | 20.1107                               |
| Exhaust<br>PM10                                               | lb/day   | 0.0000                | 2.0445                                   | 2.0445                                |
| Fugitive<br>PM10                                              | lb/c     | 18.0663               |                                          | 3.8882 40.4971 21.1543 0.0380 18.0663 |
| S02                                                           |          |                       | 0.0380                                   | 0.0380                                |
| ROG NOx CO S02                                                |          |                       | 40.4971 21.1543 0.0380                   | 21.1543                               |
| NOx                                                           |          |                       | 40.4971                                  | 40.4971                               |
| ROG                                                           |          |                       | 3.8882                                   | 3.8882                                |
|                                                               | Category | Fugitive Dust         | Off-Road                                 | Total                                 |

Date: 1/6/2021 1:54 PM Page 12 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.3 Site Preparation - 2021
Unmitigated Construction Off-Site

| C02e                                    |          | 0.0000               | 0.0000    | 205.1296          | 205.1296          |
|-----------------------------------------|----------|----------------------|-----------|-------------------|-------------------|
| N2O CO2e                                |          |                      | <br> <br> | 2                 | 2                 |
|                                         | ay       | 0.000                | 0.0000    | 6.0400e-<br>003   | 6.0400e-<br>003   |
| Bio-CO2 NBio-CO2 Total CO2 CH4          | lb/day   | 0.0000 0.0000        | 0.0000    | 204.9786 204.9786 | 204.9786 204.9786 |
| NBio-CO2                                |          | 0.000.0              | 0.0000    | 204.9786          | 204.9786          |
| Bio- CO2                                |          |                      |           |                   |                   |
| PM2.5<br>Total                          |          | 0.000.0              | 0.000.0   | 0.0549            | 0.0549            |
| Fugitive Exhaust PM2.5                  |          | 0.0000               | 0.000.0   | 1.5000e-<br>003   | 1.5000e-<br>003   |
| Fugitive<br>PM2.5                       |          | 0.000.0              | 0.000.0   | 0.0534            | 0.0534            |
| PM10<br>Total                           |          | 0.0000               | 0.0000    | 0.2028            | 0.2028            |
| Exhaust<br>PM10                         | lb/day   | 0.0000               | 0.0000    | 2 1.6300e-<br>003 | 2 1.6300e-<br>003 |
| Fugitive<br>PM10                        | /gl      | 0.0000               | 0.000     | 0.201;            | 0.2012            |
| S02                                     |          | 0.0000               | 0.0000    | 2.0600e-<br>003   | 2.0600e-<br>003   |
| 100000000000000000000000000000000000000 |          | 0.0000               | 0.0000    | 0.7250            | 0.7250            |
| NOX CO                                  |          | 0.0000 0.0000 0.0000 | 0.0000    | 0.0530            | 0.0530            |
| ROG                                     |          | 0.0000               | 0.0000    | 0.0772            | 0.0772            |
|                                         | Category | Hauling              | Vendor    | Worker            | Total             |

| C02e                                                          |          | 0.0000         | 3,715.457<br>3                    | 3,715.457<br>3                     |
|---------------------------------------------------------------|----------|----------------|-----------------------------------|------------------------------------|
| N2O CO2e                                                      |          |                |                                   |                                    |
| CH4                                                           | ay       |                | 1.1920                            | 1.1920                             |
| Total CO2                                                     | lb/day   | 0.0000         | 3,685.656<br>9                    | 3,685.656<br>9                     |
| NBio-CO2                                                      |          |                | 0.0000 3,685.656 3,685.656 1.1920 | 0.0000 3,685.656 3,685.656<br>9    |
| Bio- CO2                                                      |          |                | 0.0000                            | 0.0000                             |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total                  |          | 9.9307         | 1.8809                            | 11.8116                            |
| Fugitive Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |          | 0.000.0        | 1.8809                            | 1.8809                             |
| Fugitive<br>PM2.5                                             |          | 9.9307         |                                   | 9.9307                             |
| PM10<br>Total                                                 |          | 0.0000 18.0663 | 2.0445                            | 20.1107 9.9307                     |
| Exhaust<br>PM10                                               | lb/day   |                | 2.0445                            | 2.0445                             |
| Fugitive<br>PM10                                              | lb/      | 18.0663        |                                   | 18.0663                            |
| S02                                                           |          |                | 0.0380                            | 0.0380                             |
| တ                                                             |          |                | 21.1543                           | 21.1543                            |
| ROG NOx                                                       |          |                | 40.4971 21.1543 0.0380            | 3.8882 40.4971 21.1543 0.0380 18.0 |
| ROG                                                           |          |                | 3.8882                            | 3.8882                             |
|                                                               | Category | Fugitive Dust  | Off-Road                          | Total                              |

Date: 1/6/2021 1:54 PM Page 13 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.3 Site Preparation - 2021
Mitigated Construction Off-Site

| 1888 C                          |          |                      | <del></del> | <u>ا</u> پ        | ٥                      |
|---------------------------------|----------|----------------------|-------------|-------------------|------------------------|
| CO2e                            |          | 0.0000               | 0.0000      | 205.1296          | 205.1296               |
| NZO                             |          |                      |             |                   |                        |
| CH4                             | lay      | 0.0000               | 0.0000      | 6.0400e-<br>003   | 6.0400e-<br>003        |
| Total CO2                       | lb/day   | 0.0000 0.0000        | 0.0000      | 204.9786          | 204.9786 204.9786      |
| Bio- CO2 NBio- CO2 Total CO2    |          | 0.0000               | 0.0000      | 204.9786          | 204.9786               |
| Bio-CO2                         |          |                      |             |                   |                        |
| PM2.5 Bi                        |          | 0.0000               | 0.000.0     | 0.0549            | 0.0549                 |
| Exhaust<br>PM2.5                |          | 0.0000               | 0.0000      | 1.5000e-<br>003   | 1.5000e-<br>003        |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.0000 0.0000 0.0000 | 0.000.0     | 0.0534            | 0.0534                 |
| PM10<br>Total                   |          | 0.0000               | 0.0000      | 0.2028            | 0.2028                 |
| Exhaust<br>PM10                 | lb/day   | 0.0000 0.0000        | 0.0000      | 1.6300e-<br>003   | 1.6300e-<br>003        |
| Fugitive<br>PM10                | )/gl     | 0.0000               | 0.0000      | 0.2012            | 0.2012                 |
| <b>S</b> 02                     |          | 0.0000               | 0.000.0     | 2.0600e- C<br>003 | 0.7250 2.0600e-<br>003 |
| တ                               |          | 0.0000               | 0.0000      | 0.7250            | 0.7250                 |
| NOX                             |          | 0.0000 0.0000 0.0000 | 0.0000      | 0.0530            | 0.0530                 |
| ROG                             |          | 0.0000               | 0.0000      | 0.0772            | 0.0772                 |
|                                 | Category | Hauling              | Vendor      | Worker            | Тотаі                  |

3.4 Grading - 2021

| T22. 000 1 5 3                                                       | To see the leading |                      |                                   |                                   |
|----------------------------------------------------------------------|--------------------|----------------------|-----------------------------------|-----------------------------------|
| NZO. CO2e                                                            |                    | 0.0000               | 6,055.613<br>4                    | 6,055.613<br>4                    |
| N20.                                                                 |                    |                      |                                   |                                   |
| CH4                                                                  | <b>S</b>           |                      | 1.9428                            | 1.9428                            |
| Total CO2                                                            | lb/day             | 0.0000               | 6,007.043                         | 6,007.043<br>4                    |
| NBio-CO2                                                             |                    |                      | 6,007.043 6,007.043 1.9428<br>4 4 | 6,007.043 6,007.043 1.9428<br>4 4 |
| Bio-CO2                                                              |                    |                      |                                   |                                   |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total                         |                    | 3.5965               | 1.8265                            | 5.4230                            |
| CO SO2 Fugitive Exhaust PM10 Fugitive Exhaust PM10 70tal PM2.5 PM2.5 |                    | 0.000.0              | 1.8265                            | 1.8265                            |
| Fugitive<br>PM2.5                                                    |                    |                      | <br> <br>                         | 3.5965                            |
| PM10<br>Total                                                        |                    | 0.0000 8.6733 3.5965 | 1.9853                            | 10.6587                           |
| Exhaust<br>PM10                                                      | lay                | 0.000.0              | 1.9853                            | 1.9853                            |
| Fugitive<br>PM10                                                     | lb/day             | 8.6733               |                                   | 8.6733                            |
| S02                                                                  |                    |                      | 0.0620                            | 0.0620                            |
| င္ပ                                                                  |                    |                      | 30.8785                           | 30.8785                           |
| ROG NOX                                                              |                    |                      | 46.3998                           | 46.3998                           |
| ROG                                                                  |                    |                      | 4.1912 46.3998                    | 4.1912                            |
|                                                                      | Саtедогу           | Fugitive Dust        | Off-Road                          | Total                             |

Date: 1/6/2021 1:54 PM Page 14 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2021 Unmitigated Construction Off-Site

| <del>(77)</del>                                      |          |                        |         |                   | _                          |
|------------------------------------------------------|----------|------------------------|---------|-------------------|----------------------------|
| C02e                                                 |          | 0.0000                 | 0.0000  | 227.9217          | 227.9217                   |
| NZO                                                  |          |                        |         |                   |                            |
| CH4                                                  | Á        | 0.000.0                | 0.000.0 | 6.7100e-<br>003   | 6.7100e-<br>003            |
| Fotal C@2                                            | lb/day   | 0.0000 0.00000 0.00000 | 0.000.0 | 227.7540          | 227.7540                   |
| Bio-CO2                                              |          | 0000.0                 | 0.000.0 | 227.7540          | 227.7540 227.7540 6.7100e- |
| Bio-CO2 NBio-CO2 Total CO2                           |          |                        | <br>    | L                 |                            |
| PM2.5<br>Total                                       |          | 0.0000                 | 00000   | 0.0610            | 0.0610                     |
| Exhaust<br>PM2.5                                     |          | 0.0000                 | 0.0000  | 1.6600e-<br>003   | 1.6600e-<br>003            |
| Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |          | 0.0000 0.0000          | 0.000.0 | 0.0593            | 0.0593                     |
| PM10<br>Total                                        |          | 0.0000                 | 0.0000  | 0.2254            | 0.2254                     |
| Exhaust<br>PM10                                      | lay      | 0.0000                 | 0.000.0 | 1.8100e-<br>003   | 1.8100e-<br>003            |
| Fugitive<br>PM10                                     | lb/day   | 0.0000                 | 0.0000  | 3.2236            | 0.2236                     |
| <b>SO</b> 2                                          |          | 0.0000                 | 0.0000  | 0.8056 2.2900e- ( | 2.2900e-<br>003            |
| တ                                                    |          | 0.0000 0.0000 0.0000   | 0.0000  | 0.8056            | 0.8056                     |
| ŇOŇ                                                  |          | 0.0000                 | 0.0000  | 0.0589            | 0.0589                     |
| ROG                                                  |          | 0.0000                 | 0.0000  | 0.0857            | 0.0857                     |
|                                                      | Category | Hauling                | Vendor  | Worker            | Total                      |

| CO2e                                           |          | 0.000                       | 6,055.613<br>4                           | 6,055.613                         |
|------------------------------------------------|----------|-----------------------------|------------------------------------------|-----------------------------------|
|                                                |          |                             |                                          |                                   |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O Total | ay       |                             | 1.9428                                   | 1.9428                            |
| Total CO2                                      | lb/day   | 0.0000                      | 0.0000 6,007.043 6,007.043 1.9428<br>4 4 | 0.0000 6,007.043 6,007.043<br>4 4 |
| NBio-CO2                                       |          |                             | 6,007.043<br>4                           | 6,007.043<br>4                    |
| Bio-CO2                                        |          |                             | 0.0000                                   |                                   |
| PM2.5<br>Total                                 |          | 3.5965                      | 1.8265                                   | 5.4230                            |
| Fugitive Exhaust PM2.5 PM2.5                   |          | 0.0000                      | 1.8265                                   | 1.8265                            |
| Fugitive<br>PM2.5                              |          | 3.5965                      |                                          | 3.5965                            |
| PM10<br>Total                                  |          | 8.6733                      | 1.9853                                   | 10.6587                           |
| Exhaust<br>PM10                                | lb/day.  | 8.6733 0.0000 8.6733 3.5965 | 1.9853                                   | 1.9853                            |
| Fugitive<br>PM10                               | /gl      | 8.6733                      |                                          | 8.6733                            |
| S02                                            |          |                             | 0.0620                                   | 0.0620                            |
| NOX CO                                         |          |                             | 30.8785                                  | 30.8785                           |
| XON                                            |          |                             | 4.1912 46.3998 30.8785                   | 4.1912 46.3998 30.8785            |
| ROG                                            |          |                             | 4.1912                                   | 4.1912                            |
|                                                | Category | Fugitive Dust               | Off-Road                                 | Total                             |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Page 15 of 35

Date: 1/6/2021 1:54 PM

3.4 Grading - 2021

### Mitigated Construction Off-Site

| CO2e                         |          | 0.0000               | 0.0000                | 227.9217                   | 227.9217               |
|------------------------------|----------|----------------------|-----------------------|----------------------------|------------------------|
| NZO                          |          |                      |                       |                            |                        |
| CH4                          | lb/day   | 0.0000               | 0.0000                | 6.7100e-<br>003            | 6.7100e-<br>003        |
| Total CO2                    | )/GI     | 0.0000 0.0000 0.0000 | 0.0000                | 227.7540 227.7540 6.7100e- | 227.7540 227.7540      |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000               | 0.0000                | 227.7540                   | 227.7540               |
| Bio-CO2                      |          |                      | ;<br>;<br>;<br>;<br>; |                            |                        |
| PM2.5<br>Total               |          | 0.0000               | 0.0000                | 0.0610                     | 0.0610                 |
| Exhaust<br>PM2.5             |          | 0.000 0.0000 0.0000  | 0.0000                | 1.6600e-<br>003            | 1.6600e-<br>003        |
| Fugitive<br>PM2.5            |          | 0.0000               | 0.0000                | 0.0593                     | 0.0593                 |
| PM10<br>Total                |          | 0.0000               | 0.0000                | 0.2254                     | 0.2254                 |
| Exhaust<br>PM10              | lb/day   | 0.0000 0.0000        | 0.0000                | 1.8100e-<br>003            | 1.8100e-<br>003        |
| Fugitive<br>PM10             | //qi     | 0.0000               | 0.0000                | 0.2236                     | 0.2236                 |
| S02                          |          | 0.0000               | 0.0000                | 2.2900e-<br>003            | 2.2900e-<br>003        |
| တ                            |          | 0.0000               | 0.0000                | 0.8056                     | 0.8056                 |
| NOX                          |          | 0.0000 0.0000 0.0000 | 0.000.0               | 0.0589                     | 0.0589 0.8056 2.2900e- |
| ROG                          |          | 0.0000               | 0.0000                | 0.0857                     | 0.0857                 |
|                              | Category | Hauling              | Vendor                | Worker                     | Total                  |

#### 3.4 Grading - 2022

| DALKET ETVELL                             | Pagaras  |                          | 1                                 |                                      |
|-------------------------------------------|----------|--------------------------|-----------------------------------|--------------------------------------|
| C02e                                      |          | 0.0000                   | 6,060.015                         | 6,060.015<br>8                       |
| NZO                                       |          |                          |                                   | :                                    |
| CH4                                       | Á        |                          | 1.9442                            | 1.9442                               |
| Total CO2                                 | lb/day   | 0.0000                   | 6,011.410 6,011.410 1.9442<br>5 5 | 6,011.410 6,011.410 1.9442<br>5 5    |
| NBio-CO2                                  |          |                          | 6,011.410                         | 6,011.410                            |
| Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e |          |                          |                                   |                                      |
| PM2.5<br>Total                            |          | 3.5965                   | 1.5041                            | 5.1006                               |
| Exhaust<br>PM2.5                          |          | 3.5965 ; 0.0000 ; 3.5965 | 1.5041                            | 1.5041                               |
| Fugitive<br>PM2.5                         |          | 3.5965                   | <br> <br> <br> <br> <br>          | 3.5965                               |
| PM10<br>Total                             |          | 0.0000 8.6733            | 1.6349                            | 10.3082                              |
| Exhaust<br>PM10                           | lb/day   | 0.000.0                  | 1.6349                            | 1.6349                               |
| Fugitive Exhaust<br>PM10 PM10             | )/gl     | 8.6733                   |                                   | 8.6733                               |
|                                           |          |                          | 0.0621                            | 0.0621                               |
| 00                                        |          |                          | 29.0415                           | 29.0415                              |
| ROG NOx CO SO2                            |          |                          | 38.8435 29.0415                   | 3.6248 38.8435 29.0415 0.0621 8.6733 |
| ROG                                       |          |                          | 3.6248                            | 3.6248                               |
|                                           | Category | Fugitive Dust            | Off-Road                          | Total                                |

Page 16 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

3.4 Grading - 2022
Unmitigated Construction Off-Site

| 0,317,477                      | Naci (Alay |                      |                            |                               | T                      |
|--------------------------------|------------|----------------------|----------------------------|-------------------------------|------------------------|
| CO2e                           |            | 0.0000               | 0.0000                     | 219.8941                      | 219.8941               |
| N2O                            |            |                      |                            | <br> <br> <br> <br> <br> <br> |                        |
| CH4                            | Хe         | 0.0000               | 0.000.0                    | 6.0600e-<br>003               | 6.0600e-<br>003        |
| Bio-CO2 NBio-CO2 Total CO2 CH4 | (kep/qi    | 0.0000               | 0.0000                     | 219.7425 219.7425             | 219.7425 219.7425      |
| NBio- CO2                      |            | 0.000.0              | 0.0000                     | 219.7425                      | 219.7425               |
| Bio- CO2                       |            |                      | 1<br>1<br>1<br>1<br>1<br>1 |                               |                        |
| r PM2.5<br>Total               |            | 0.0000               | 0.000.0                    | 0.0609                        | 0.0609                 |
| Exhaus<br>PM2.5                |            | 0.0000               | 0.0000                     | 1.6100e-<br>003               | 1.6100e-<br>003        |
| Fugitive<br>PM2.5              |            | 0.0000 0.0000        | 0.0000                     | 0.0593                        | 0.0593                 |
| PM10<br>Total                  |            | 0.0000               | 0.0000                     | 0.2253                        | 0.2253                 |
| Exhaust<br>PM10                | lb/day     | 0.0000               | 0.0000                     | 1.7500e-<br>003               | 1.7500e-<br>003        |
| Fugitive<br>PM10               | /qı        | 0.0000               | 0.0000                     | 0.2236                        | 0.2236                 |
| S02                            |            | 0.0000               | 0.0000                     | 0.7432 2.2100e- 0<br>003      | 0.7432 2.2100e-<br>003 |
| လ                              |            | 0.0000               | 0.0000                     | 0.7432                        |                        |
| ROG NOx CO SO2                 |            | 0.0000 0.0000 0.0000 | 0.000.0                    | 0.0532                        | 0.0532                 |
| ROG                            |            | 0.0000               | 0.0000                     | 0.0803                        | 0.0803                 |
|                                | Category   | Hauling              | Vendor                     | Worker                        | Total                  |

### Mitigated Construction On-Site

|                                            | n ar er ser |                                    | <b>.</b>                                 |                                        |
|--------------------------------------------|-------------|------------------------------------|------------------------------------------|----------------------------------------|
| CO2e                                       |             | 0.0000                             | 6,060.015<br>8                           | 6,060.015<br>8                         |
| NZO                                        |             |                                    | <br> <br> <br> <br> <br> <br>            |                                        |
| CH4                                        | V           |                                    | 1.9442                                   | 1.9442                                 |
| Fotal CO2                                  | lb/day      | 0.0000                             | 6,011.410<br>5                           | 6,011.410<br>5                         |
| Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e  |             |                                    | 0.0000 6,011.410 6,011.410 1.9442<br>5 5 | 0.0000 6,011.410 6,011.410 1.9442<br>5 |
| Bio-CO2                                    |             |                                    |                                          | 0.0000                                 |
| PM2.5 B<br>Total                           |             | 3.5965                             | 1.5041                                   | 5.1006                                 |
| Exhaust<br>PM2.5                           |             | 0.000.0                            | 1.5041                                   | 1.5041                                 |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |             | 8.6733 0.0000 8.6733 3.5965 0.0000 |                                          | 3.5965                                 |
| PM10<br>Total                              |             | 8.6733                             | 1.6349                                   | 10.3082                                |
| Exhaust<br>PM10                            | lb/day      | 0.000.0                            | 1.6349 1.6349                            | 1.6349                                 |
| Fugitive<br>PM10                           | lb/c        | 8.6733                             |                                          | 8.6733                                 |
| S02                                        |             |                                    | 0.0621                                   | 0.0621                                 |
| 00                                         |             |                                    | 29.0415                                  | 29.0415                                |
| XON                                        |             |                                    | 3.6248 38.8435 29.0415                   | 3.6248 38.8435 29.0415 0.0621          |
| ROG                                        |             |                                    | 3.6248                                   | 3.6248                                 |
|                                            | Category    | Fugitive Dust                      | Off-Road                                 | Total                                  |

(

Page 17 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

3.4 Grading - 2022

Mitigated Construction Off-Site

| 989-701 DV                 | To profession | ı                   |             |                         |                        |
|----------------------------|---------------|---------------------|-------------|-------------------------|------------------------|
| C02e                       |               | 0.0000              | 0.0000      | 219.8941                | 219.8941               |
| NZO                        |               |                     |             |                         |                        |
| СН4                        | ay            | 0.0000              | 0.0000      | 6.0600e-<br>003         | 6.0600e-<br>003        |
| Total CO2                  | lb/day        | 0.000.0             | 0.0000      | 219.7425 219.7425       | 219.7425 219.7425      |
| Bio-CO2 NBio-CO2 Total CO2 |               | 0.0000              | 0.0000      | 219.7425                | 219.7425               |
| Bio-CO2                    |               |                     | !<br>!<br>! |                         |                        |
| PM2.5<br>Total             |               | 0.000.0             | 0.0000      | 0.0609                  | 0.0609                 |
| Exhaust<br>PM2.5           |               | 0.0000              | 0.0000      | 1.6100e-<br>003         | 1.6100e-<br>003        |
| Fugitive<br>PM2:5          |               | 0.0000              | 0.0000      | 0.0593                  | 0.0593                 |
| PM10<br>Total              |               | 0.0000              | 0.0000      | 0.2253                  | 0.2253                 |
| Exhaust<br>PM10            | b/day         | 0.000 0.0000        | 0.0000      | 1.7500 <b>e-</b><br>003 | 1,7500e-<br>003        |
| Fugitive<br>PM10           | /qı           | 0.000.0             | 0.0000      | 0.2236                  | 0.2236                 |
| S02                        |               | 0.0000              | 0.0000      | 2.2100e- C<br>003       | 0.7432 2.2100e-<br>003 |
| NO× CO                     |               | 0.0000              | 0.000.0     | 0.7432                  | 0.7432                 |
| XON                        |               | 0.000 0.0000 0.0000 | 0.0000      | 0.0532                  | 0.0532                 |
| ROG                        |               | 0.0000              | 0.0000      | 0.0803                  | 0.0803                 |
|                            | Category      | Hauling             | Vendor      | Worker                  | Total                  |

# 3.5 Building Construction - 2022

| CO2e                                 |          | 2,569.632<br>2                    | 2,569.632<br>2                    |
|--------------------------------------|----------|-----------------------------------|-----------------------------------|
| N20                                  |          |                                   |                                   |
| CH4                                  | yday.    | 0.6120                            | 0.6120                            |
| Total G02                            | )/gi     | 2,554.333 2,554.333 0.6120<br>6 6 | 2,554.333 2,554.333 0.6120<br>6 6 |
| NBio-CO2                             |          | 2,554,333<br>6                    | 2,554.333<br>6                    |
| Bio-CO2                              |          |                                   |                                   |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.7612                            | 0.7612                            |
| Fugitive Exhaust<br>PM2.5 PM2.5      |          | 0.7612 0.7612                     | 0.7612                            |
| Fugitive<br>PM2.5                    |          |                                   |                                   |
| PM10<br>Total                        |          | 0.8090                            | 0.8090                            |
| Fugitive Exhaust<br>PM10 PM10        | lb/day   | 0.8090 0.8090                     | 0.8090                            |
| Fugitive<br>PM10                     | Ip/      |                                   |                                   |
| S02                                  |          | 0.0269                            | 0.0269                            |
| 00                                   |          | 16.3634                           | 16.3634                           |
| NOX                                  |          | 1.7062 15.6156 16.3634 0.0269     | 1.7062 15.6156 16.3634            |
| ROG                                  |          | 1.7062                            | 1.7062                            |
|                                      | Category | Off-Road                          | Total                             |

Page 18 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

3.5 Building Construction - 2022
Unmitigated Construction Off-Site

| <del> </del>                     | F-22-241 : |                          |                            |                                         |                                     |
|----------------------------------|------------|--------------------------|----------------------------|-----------------------------------------|-------------------------------------|
| C02e                             |            | 0.000.0                  | 3,902.138<br>4             | 8,806.758<br>2                          | 12,708.89<br>66                     |
| N2O                              |            |                          |                            | <br> <br> <br> <br> <br> <br> <br> <br> | :                                   |
| CH4                              | lay        | 0.0000                   | 0.2236                     | 0.2429                                  | 0.4665                              |
| Total CO2                        | lb/day     | 0.0000 1 0.0000 1 0.0000 | 3,896.548 3,896.548<br>2 2 | 8,800.685<br>7                          | 12,697.23 12,697.23<br>39 39        |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |            | 0.000.0                  | 3,896.548<br>2             | 8,800.685<br>7                          | 12,697.23<br>39                     |
| Bio-CO2                          |            |                          |                            |                                         |                                     |
| PM2.5<br>Total                   |            | 0.000.0                  | 0.2873                     | 2.4390                                  | 2.7263                              |
| Exhaust<br>PM2.5                 |            | 0.0000 0.0000 0.0000     | 0.0237                     | 0.0646                                  | 0.0883                              |
| Fugitive Exhaust<br>PM2.5 PM2.5  |            | 0.0000                   | 0.2636                     | 2.3745                                  | 2.6381                              |
| PM10<br>Total                    |            | 0.0000                   | 0.9404                     | 9.0234                                  | 9.9637                              |
| Exhaust<br>PM10                  | b/day      | 0.0000                   | 0.0248                     | 0.0701                                  | 0.0949                              |
| Fugitive<br>PM10                 | /qi        | 0.0000                   | 0.9155                     | 8.9533                                  | 8898'6                              |
| S02                              |            | 0.0000                   | 0.0364                     | 0.0883                                  | 0.1247                              |
| တ္သ                              |            | 0.0000                   | 3.4341                     | 2.1318 29.7654                          | 33.1995                             |
| NOx CO SO2 Fugitive PM10         |            | 0.0000 0.0000 0.0000     | 0.4079 13.2032 3.4341      | 2.1318                                  | 3.6242   15.3350   33.1995   0.1247 |
| ROG                              |            | 0.0000                   | 0.4079                     | 3.2162                                  | 3.6242                              |
|                                  | Category   | Hauling                  | Vendor                     | Worker                                  | Total                               |

| CO2e                                    |          | 2,569.632<br>2                                  | 2,569.632<br>2                    |
|-----------------------------------------|----------|-------------------------------------------------|-----------------------------------|
| NZO                                     |          |                                                 |                                   |
| CH4                                     | â        | 0.6120                                          | 0.6120                            |
| Fotal CO2                               | Ib/day   | 2,554.333<br>6                                  | 2,554.333<br>6                    |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e |          | 2,554.333                                       | 0.0000 2,554.333 2,554.333 0.6120 |
| Bio-co2 1                               |          | 0.000.0                                         | 0.0000                            |
| PM2.5<br>Total                          |          | 0.7612 0.7612 0.0000 2.554.333 2.554.333 0.6120 | 0.7612                            |
| Exhaust<br>PM2.5                        |          | 0.7612                                          | 0.7612                            |
| Fugitive Exhaust<br>PM2.5 PM2.5         |          |                                                 |                                   |
| PM10<br>Total                           |          | 0.8090                                          | 0.8090                            |
| ugitive Exhaust PM10<br>PM10 PM10 Total | ay       | 0.8090 0.8090                                   | 0.8090                            |
| Fugitive<br>PM10                        | lb/day   |                                                 |                                   |
| 802                                     |          | 0.0269                                          | 0.0269                            |
| 8                                       |          | 16.3634                                         | 16.3634                           |
| ×ON                                     |          | 1.7062 15.6156 16.3634 0.0269                   | 1.7062 15.6156                    |
| ROG                                     |          | 1.7062                                          | 1.7062                            |
|                                         | Category | Off-Road                                        | Total                             |
|                                         |          | ľ                                               |                                   |

Date: 1/6/2021 1:54 PM Page 19 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2022

Mitigated Construction Off-Site

| G 515 89                               | Berras en 200 |                      |                            |                          |                              |
|----------------------------------------|---------------|----------------------|----------------------------|--------------------------|------------------------------|
| CO2e                                   |               | 0.0000               | 3,902.138<br>4             | 8,806.758<br>2           | 12,708.89<br>66              |
| NZO                                    |               |                      |                            |                          |                              |
| CH4                                    | ,             | 0.0000               | 0.2236                     | 0.2429                   | 0.4665                       |
| Fotal CO2                              | lb/day        | 0.000.0              | 3,896.548<br>2             |                          | 12,697.23<br>39              |
| Bio- CO2   NBio- CO2   Total CO2   CH4 |               | 0.000.0              | 3,896.548 3,896.548<br>2 2 | 8,800.685 8,800.685<br>7 | 12,697.23 12,697.23<br>39 39 |
| Bio-CO2                                |               |                      | <br>                       |                          |                              |
| PM2.5<br>Total                         |               | 0.0000               | 0.2873                     | 2.4390                   | 2.7263                       |
| Exhaust<br>PM2.5                       |               | 0.0000               | 0.0237                     | 0.0646                   | 0.0883                       |
| Fugitive Exhaust<br>PM2.5 PM2.5        |               | 00000 000000 000000  | 0.2636                     | 2.3745                   | 2.6381                       |
| PM10<br>Total                          |               | 0.0000               | 0.9404                     | 9.0234                   | 9.9637                       |
| Exhaust<br>PM10                        | lb/day        | 0.0000               | 0.0248                     | 0.0701                   | 0.0949                       |
| Fugitive<br>PM10                       | )QI           | 0                    | 0.9155                     | 8.9533                   | 8898'6                       |
| S02                                    |               | 0.0000               | 0.0364                     | 0.0883                   | 0.1247                       |
| 00                                     |               | 0.0000               | 3.4341                     | 29.7654                  | 33.1995                      |
| ROG NOx CO SO2                         |               | 0.0000 0.0000 0.0000 | 0.4079 13.2032             | 2.1318                   | 3.6242 15.3350 33.1995       |
| ROG                                    |               | 0.0000               | 0.4079                     | 3.2162                   | 3.6242                       |
|                                        | Category      | Hauling              | Vendor                     | Worker                   | Total                        |

# 3.5 Building Construction - 2023

| CO2e                                       |          | 2,570.406                     | 2,570.406<br>1                |
|--------------------------------------------|----------|-------------------------------|-------------------------------|
| N2O CO2e                                   |          |                               |                               |
| CCH4                                       | lb/day   | 0.6079                        | 0.6079                        |
| Total CO2                                  | //qI     | 2,555.209 2,555.209 0.6079    | 2,555.209 2,555.209 0.6079    |
| NBio-CO2                                   |          | 2,5 <b>5</b> 5.209            | 2,555.209<br>9                |
| Bio-CO2                                    |          |                               |                               |
| PM2.6 Bio-CO2 NBio-CO2 Total CO2 CH4 Total |          | 0.6584                        | 0.6584                        |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |          | 0.6584 0.6584                 | 0.6584                        |
| Fugitive<br>PM2.5                          |          |                               |                               |
| PM10<br>Total                              |          | 0.6997                        | 0.6997                        |
| Exhaust<br>PM10                            | b/day    | 0.6997 0.6997                 | 2669'0                        |
| Fugitive<br>PM10                           | /qı      |                               |                               |
| S02                                        |          | 0.0269                        | 0.0269                        |
| တ္                                         |          | 16.2440                       | 16.2440                       |
| XON                                        |          | 1.5728 14.3849 16.2440 0.0269 | 1.5728 14.3849 16.2440 0.0269 |
| ROG                                        |          | 1.5728                        | 1.5728                        |
|                                            | Category | Off-Road                      | Total                         |
|                                            | Ö        | 0                             |                               |

Date: 1/6/2021 1:54 PM Page 20 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2023
Unmitigated Construction Off-Site

| CO2e.                                       |              | 0.0000                             | 3,778.830                               | 8,483.916<br>0             | 12,262.74<br>60                     |
|---------------------------------------------|--------------|------------------------------------|-----------------------------------------|----------------------------|-------------------------------------|
| NZO                                         |              |                                    | <br> <br> <br> <br> <br> <br> <br> <br> |                            |                                     |
| CH4                                         | biday        | 0.0000                             | 0.1982                                  | 0.2190                     | 0.4172                              |
| Total CO2                                   | lb/c         | 0.0000 0.0000 0.0000               | 3,773.876 3,773.876 0.1982<br>2 2       | 8,478.440 8,478.440<br>8 8 | 12,252.31 12,252.31 0,4172<br>70 70 |
| NBio-CO2                                    |              | 0.0000                             | 3,773.876<br>2                          | 8,478.440<br>8             | 12,252.31<br>70                     |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4. Total |              | 3-0-0                              | :<br>:<br>:<br>:                        |                            |                                     |
|                                             |              | 0.0000                             | 0.2747                                  | 2.4372                     | 2.7118                              |
| Exhaust<br>PM2.5                            |              | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0111                                  | 0.0627                     | 0.0738                              |
| Fugitive<br>PM2.5                           |              | 0.0000                             | 0.2636                                  | 2.3745                     | 2.6381                              |
| PM10<br>Total                               |              | 0.0000                             | 0.9271                                  | 9.0214                     | 9.9485                              |
| Exhaus<br>PM10                              | lb/day       | 0.0000                             | 0.0116                                  | 0.0681                     | 7670.0                              |
| Fugitive<br>PM10                            | / <b>G</b> I | 0.0000                             | 0.9156                                  | 8.9533                     | 9,8688                              |
| 203                                         |              | 0.0000                             | 0.0352                                  | 0.0851                     | 0.1203                              |
| 00                                          |              | 0.0000                             | 3.1014                                  | 27.4113                    | 30,5127                             |
| ROG NOx CO SO2                              |              | 0.0000 0.0000 0.0000               | 10.0181                                 | 1.9287                     | 11.9468                             |
| ROG                                         |              | 0.0000                             | 0.3027                                  | 3.0203                     | 3,3229                              |
|                                             | Category     | Hauling                            | Vendor                                  | Worker                     | Total                               |

| CO2e                                                              |          | 2,570.406<br>1                    | 2,570.406<br>1                    |
|-------------------------------------------------------------------|----------|-----------------------------------|-----------------------------------|
| N2O CO2e                                                          |          |                                   |                                   |
| CH4                                                               | Ae       | 0.6079                            | 0.6079                            |
| Total CO2                                                         | lb/day   | 2,555.209                         | 2,555.209<br>9                    |
| Bio-CO2 NBio-CO2 Total CO2 CH4                                    |          | 0.0000 2,555.209 2,555.209 0.6079 | 0.0000 2,555.209 2,555.209 0.6079 |
| Bio- CO2                                                          |          | 0.0000                            | 0.000                             |
| PM2.5<br>Total                                                    |          | 0.6584                            | 0.6584                            |
| Exhaust<br>PM2.5                                                  |          | 0.6584 0.6584                     | 0.6584                            |
| Fugitive<br>PM2.5                                                 |          |                                   |                                   |
| PM10<br>Total                                                     |          | 0.6997                            | 0.6997                            |
| ogitive Exhaust PM/10 Fugitive Exhaust PM/10 Total PM/2.5 PM/2.5. | lay      | 0.6997                            | 0.6997                            |
| E T                                                               | kep/ql   |                                   |                                   |
| S02                                                               |          | 0.0269                            | 0.0269                            |
| ေဝ၁                                                               |          | 16.2440                           |                                   |
| Nox                                                               |          | 1.5728 14.3849 16.2440 0.0269     | 1.5728 14.3849 16.2440            |
| ROG                                                               |          | 1.5728                            | 1.5728                            |
|                                                                   | Category | Off-Road                          | Total                             |
|                                                                   |          |                                   |                                   |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

3.5 Building Construction - 2023
Mitigated Construction Off-Site

| Fg847 + 15 T               | NAME OF  |                      | · .                        | ٠,٥                                                                                              | 14                           |
|----------------------------|----------|----------------------|----------------------------|--------------------------------------------------------------------------------------------------|------------------------------|
| N2O CO2e                   |          | 0.0000               | 3,778.830<br>0             | 8,483.916<br>0                                                                                   | 12,262.74                    |
| NZO                        |          |                      | 1<br>                      | ;<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{<br>{ |                              |
| CH4                        | ay       | 0.0000               | 0.1982                     | 0.2190                                                                                           | 0.4172                       |
| Total CO2                  | (p/qay   | 0.000.0 0.000.0      | 3,773.876<br>2             | 8,478.440<br>8                                                                                   | 12,252.31<br>70              |
| NBio-CO2                   |          | 0.000.0              | 3,773.876 3,773.876<br>2 2 | 8,478.440 8,478.440<br>8 8                                                                       | 12,252.31 12,252.31<br>70 70 |
| Bio-CO2 NBio-CO2 Total CO2 |          |                      |                            |                                                                                                  |                              |
| PM2.5<br>Total             |          | 0.0000               | 0.2747                     | 2.4372                                                                                           | 2.7118                       |
| Exhaust<br>PM2.5           |          | 0.000.0              | 0.0111                     | 0.0627                                                                                           | 0.0738                       |
| Fugitive<br>PM2.5          |          | 0.000.0              | 0.2636                     | 2.3745                                                                                           | 2.6381                       |
| PM10<br>Total              |          | 0.0000               | 0.9271                     | 9.0214                                                                                           | 9,9485                       |
| Exhaust<br>PM10            | lb/day   | 0.000.0              | 0.0116                     | 0.0681                                                                                           | 0.0797                       |
| Fugitive<br>PM10           | )/g      | 0.0000               | 0.9156                     | 8.9533                                                                                           | 9.8688                       |
| co.   soz                  |          | 0.0000               |                            | 0.0851                                                                                           | 0.1203                       |
|                            |          | 0.0000 0.0000 0.0000 | 3.1014                     | 27.4113                                                                                          | 30.5127                      |
| XON.                       |          | 0.0000               | 10.0181                    | 1.9287                                                                                           | 11.9468                      |
| ROG                        |          | 0.0000               | 0.3027                     | 3.0203                                                                                           | 3.3229                       |
|                            | Category | Hauling              | Vendor                     | Worker                                                                                           | Total                        |

3.6 Paving - 2023

| CO2e                                  |             | 2,225.433<br>6                    | 0.0000 | 2,225.433<br>6             |
|---------------------------------------|-------------|-----------------------------------|--------|----------------------------|
| NZO                                   |             |                                   |        |                            |
| CH4                                   | lb/day      | 0.7140                            |        | 0.7140                     |
| Total CO2                             | <b>/g</b> i | 2,207.584 2,207.584 0.7140<br>1 1 | 0.0000 | 2,207.584 2,207.584 0.7140 |
| Bio-CO2 NBio-CO2 Total CO2 CH4        |             | 2,207.584                         |        | 2,207.584<br>1             |
| Bio-CO2                               |             |                                   |        |                            |
| PM2.5<br>Total                        |             | 0.4694                            | 0.0000 | 0.4694                     |
| Fugitive Exhaust<br>PM2.5 PM2.5       |             | 0.4694                            | 0.0000 | 0.4694                     |
| Fugitive<br>PM2.5                     |             |                                   |        |                            |
| PM10<br>Total                         |             | 0.5102                            | 0.0000 | 0.5102                     |
| Fugitive Exhaust PM10 PM10 PM10 Total | ib/day      | 0.5102                            | 0.0000 | 0.5102                     |
| Fugitive.<br>PM10                     | lb/e        |                                   |        |                            |
| S02                                   |             | 0.0228                            |        | 0.0228                     |
| ဗ္ဗ                                   |             | 14.5842                           |        | 14.5842                    |
| ROG NOx                               |             | 1.0327 10.1917 14.5842 0.0228     |        | 1.0327 10.1917 14.5842     |
| ROG                                   |             | 1.0327                            | 0.0000 | 1.0327                     |
|                                       | Category    | Off-Road                          | Paving | Total                      |

Page 22 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

3.6 Paving - 2023
Unmitigated Construction Off-Site

|                            | arannon e |                     |         |                 |                 |
|----------------------------|-----------|---------------------|---------|-----------------|-----------------|
| C02e                       |           | 0.0000              | 0.0000  | 158.8748        | 158.8748        |
| N20                        |           |                     | [       |                 |                 |
| CH4 N20                    | A         | 0.0000              | 0.000.0 | 4.1000e-<br>003 | 4.1000e-<br>003 |
| Total CO2                  | (b/day    |                     | 0.000.0 | 158.7723        | 158.7723        |
| Bio-CO2 NBio-CO2 Total CO2 |           | 0.0000 0.0000       | 0.0000  | 158.7723        | 158.7723        |
| Bio- CO2                   |           |                     |         |                 |                 |
| PM2.5<br>Total             |           | 0.0000              | 0000.0  | 0.0456          | 0.0456          |
| Exhaust<br>PM2.5           |           | 0.000.0             | 0.000.0 | 1.1700e-<br>003 | 1.1700e-<br>003 |
| Fugitive<br>PM2.5          |           | 0.0000 0.0000       | 0.0000  | 0.0445          | 0.0445          |
| PM10<br>Total              |           | 0.0000              | 0.0000  | 0.1689          | 0.1689          |
| Exhaust<br>PM10            | lay       | 0.000.0             | 0.000.0 | 1.2800e-<br>003 | 1.2800e-<br>003 |
| Fugitive<br>PM10           | lb/day    | 0.0000              | 0.0000  | 0.1677          | 0.1677          |
|                            |           | 0.000.0             | 0.0000  | 1.5900e-<br>003 | 1.5900e-<br>003 |
| co soz                     |           | 0.000 0.0000 0.0000 |         | 0.0361 0.5133   | 0.5133          |
| ×ON                        |           | 0.0000              | 0.0000  | 0.0361          | 0.0361          |
| ROG                        |           | 0.0000              | 0.0000  | 0.0566          | 0.0566          |
|                            | Category  | Hauling             | Vendor  | Worker          | Total           |

| 13795                             | F2. 3.22 | F                                 |                     |                                   |
|-----------------------------------|----------|-----------------------------------|---------------------|-----------------------------------|
| CO2e                              |          | 2,225.433<br>6                    | 0.0000              | 2,225.433<br>6                    |
| N2O                               |          |                                   |                     |                                   |
| CH4                               | A        | 0.7140                            | <br> <br> <br> <br> | 0.7140                            |
| Total CO2                         | (lp/day  | 2,207.584                         | 0.0000              | 2,207.584                         |
| Bio- CO2 NBio- CO2 (Total CO2 CH4 |          | 0.0000 2,207.584 2,207.584 0.7140 | <br> <br> <br>      | 0.0000 2,207.584 2,207.584 0.7140 |
| Bio- CO2                          |          | 0.000.0                           |                     | 0.0000                            |
| PM2.5<br>Total                    |          | 0.4694                            | 0000.0              | 0.4694                            |
| Exhaust<br>PM2:5                  |          | 0,4694 0,4694                     | 0.000.0             | 0.4694                            |
| Fugitive<br>PM2.5                 |          |                                   |                     |                                   |
| PM10<br>Total                     |          | 0.5102                            | 0.0000              | 0.5102                            |
| Exhaust PM10<br>PM10 Total        | b/day    | 0.5102 0.5102                     | 0.000.0             | 0.5102                            |
| Fugitive<br>PM10                  | )(Ib/o   |                                   |                     |                                   |
| CO SO2                            |          | 0.0228                            |                     | 0.0228                            |
| တ                                 |          | 14.5842                           |                     | 14.5842                           |
| ROG NOX                           |          | 1.0327 10.1917 14.5842            |                     | 1.0327 10.1917 14.5842 0.0228     |
| ROG                               |          | 1.0327                            | 0.000.0             | 1.0327                            |
|                                   | Category | Off-Road                          | Paving              | Total                             |

716.3.2 Page 23 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2023

Mitigated Construction Off-Site

| c02e                           |              | 0.000                | 0.0000                               | 158.8748                    | 158.8748               |
|--------------------------------|--------------|----------------------|--------------------------------------|-----------------------------|------------------------|
| N20                            |              |                      |                                      |                             |                        |
| CH4 N2O                        | ay.          | 0.0000               | 0.000.0                              | 4.1000e-<br>003             | 4.1000e-<br>003        |
| Total CO2                      | . Ib/day     | 0.0000               | 0.0000                               | 158.7723 158.7723 4.1000e-  | 158.7723 158.7723      |
| Bio- CO2 NBio- CO2 Total CO2   |              | 0.000.0              | 0.000.0                              | 158.7723                    | 158.7723               |
| Bio- CO2                       |              |                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ;<br>;<br>;<br>;<br>;       |                        |
| t PM2.5<br>F Total             |              | 0.0000               | 0.0000                               | 0.0456                      | 0.0456                 |
| Exhaus<br>PM2.5                |              |                      | 0.000.0                              | 1.1700 <del>e-</del><br>003 | 1.1700e-<br>003        |
| Fugitive<br>PM2.5              |              | 0.0000 0.0000 0.0000 | 0.0000                               | 0.0445                      | 0.0445                 |
| PM10<br>Total                  |              | 0.0000               | 0.0000                               | 0.1689                      | 0.1689                 |
| -ugitive Exhaust<br>-PM10 PM10 | lb/dáy       | 0.0000               | 0.0000                               | 1.2800e-<br>003             | 1.2800e-<br>003        |
| Fugitive<br>PM10               | / <u>/</u> 9 | 0.0000               | 0.0000                               | 0.1677                      | 0.1677                 |
| \$05                           |              | 0.0000               | 0.0000                               | 1.5900e- 0<br>003           | 1.5900e-<br>003        |
| 8                              |              | 0.0000 0.0000 0.0000 | 0.0000                               | 0.5133                      | 0.0361 0.5133 1.5900e- |
| NOX CO                         |              | 0.0000               | 0.000.0                              | 0.0361                      | 0.0361                 |
| ROG                            |              | 0.0000               | 0.0000                               | 0.0566                      | 0.0566                 |
|                                | Category     | Hauling              | Vendor                               | Worker                      | Total                  |

3.6 Paving - 2024

| ROG         NOx         CO         SOZ         Fugitive PM/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>المساحد الماليات |                                              |                    |          |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|--------------------|----------|-------------------|
| Fugitive         Exhaust         PM.2.5 PM.2.5 PM.2.5 Total         PM.2.5 PM.                                                 | 2,225.396<br>3       | 0.0000                                       | 2,225.396<br>3     |          | C02e              |
| Fugitive         Exhaust         PM.10 Fugitive         Exhaust PM.2.5 PM.2.5 Fotal         Bio-CO2 Fotal Fot                                                          |                      |                                              |                    |          | N2O               |
| Fugitive         Exhaust         PM10         Fugitive         Exhaust         PM2.5         Bio-CO2           PM10         Folal         PM2.5         Total         Bio-CO2           Ib/day         0.4685         0.4685         0.4885         0.4310           0.0000         0.0000         0.0000         0.0000           0.4310         0.4310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7140               | <b>;                                    </b> | 0.7140             | ay       | CH4               |
| Fugitive         Exhaust         PM10         Fugitive         Exhaust         PM2.5         Bio-CO2           PM10         Folal         PM2.5         Total         Bio-CO2           Ib/day         0.4685         0.4685         0.4885         0.4310           0.0000         0.0000         0.0000         0.0000           0.4310         0.4310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,207.547<br>2       | 0.0000                                       | 2,207.547          | P/ql     | Total CO2         |
| Fugitive         Exhaust         PM10         Fugitive         Exhaust         PM2.5         Bio-CO2           PM10         Folal         PM2.5         Total         Bio-CO2           Ib/day         0.4685         0.4685         0.4885         0.4310           0.0000         0.0000         0.0000         0.0000           0.4310         0.4310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,207.547<br>2       | <br> <br> <br> <br> <br> <br>                | 2,20 <b>7</b> .547 |          | NBio- CO2         |
| Fugitive   Exhaust   PM10   Fugitive   Exhaust   PM2.5   PM2 |                      |                                              |                    |          | Bio-CO2           |
| Fugitive   Exhaust   PM10   Fugitive   Exhaust   PM2.5   PM2 | 0.4310               | 0000.0                                       | 0.4310             |          | PM2.5<br>Total    |
| Fugitive   Exhaust   PM10   Fugitive   PM10   PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4310               | 0.000.0                                      | 0.4310             |          | Exhaust<br>PM2.5  |
| Eugitive Exhaust PM10 PM10 Total b/day.  0.4685 0.4685  0.4685 0.4685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                              |                    |          | Fugitive<br>PM2.5 |
| Fugitive<br>PM/10<br>b/da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4685               | 0.0000                                       | 0.4685             |          | PM10<br>Total     |
| Fugitive<br>PM/10<br>Ib/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4685               |                                              | 0.4685             | ay       | Exhaust<br>PM10   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                              |                    | p/qI     | Fugitive<br>PM10  |
| 246 14.6258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0228               |                                              | 0.0228             |          |                   |
| 246<br>246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.6258              |                                              | 14.6258            |          | လ                 |
| \$ 6 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.5246               |                                              | 9.5246             |          | ŇŎĸ               |
| 0.9882<br>0.9882<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9882               | 0.0000                                       | 0.9882             |          | ROG               |
| Category Off-Road Paving Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total                | Paving                                       |                    | Category |                   |

Date: 1/6/2021 1:54 PM Page 24 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2024
Unmitigated Construction Off-Site

| CO2e                          |             | 0.000                              | 0.0000 | 153.9458          | 153.9458             |
|-------------------------------|-------------|------------------------------------|--------|-------------------|----------------------|
| NZO                           |             |                                    |        | <br>!<br>!        |                      |
| OH44                          | iay         | 0.000.0                            | 0.000  | 3.7600e-<br>003   | 3.7600e-<br>003      |
| Bio- CO2 NBio- CO2 Total CO2  | lb/day      | 0.0000 0.0000                      | 0.0000 | 153.8517 153.8517 | 153.8517 3.7600e-003 |
| NBio-CO2                      |             | 0.0000                             | 0.0000 | 153.8517          | 153.8517             |
| Bio-CO2                       |             |                                    |        |                   |                      |
| t PW2.5<br>Total              |             | 0.0000                             | 0.0000 | 0.0456            | 0.0456               |
| Fugitive Exhaust PM2.5        |             | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 | 1.1600e-<br>003   | 1.1600e-<br>003      |
| Fugitive<br>PM2:5             |             | 0.0000                             | 0.0000 | 0.0445            | 0.0445               |
| PM10<br>Total                 |             | 0.0000                             | 0.0000 | 0.1689            | 0.1689               |
| Fugitive Exhaust<br>PM10 PM10 | lb/day      | 0.0000                             | 0.0000 | 1.2600e-<br>003   | 1.2600e-<br>003      |
| Fugitive<br>PM10              | <b>/9</b> I | 0.0000                             | 0.0000 | 0.1677            | 0.1677               |
| 20S 00                        |             | 0.0000                             | 0.0000 | 1.5400e- C<br>003 | 1.5400e-<br>003      |
| Y                             |             | 0.0000                             | 0.0000 | 0.4785            | 0.4785               |
| ROG NOx                       |             | 0.000.0 0.000.0 0.000.0            | 0.0000 | 0.0329            | 0.0535 0.0329        |
| ROG                           |             | 0.0000                             | 0.0000 | 0.0535            | 0.0535               |
|                               | Category    | Hauling                            | Vendor | Worker            | Total                |

|                                                               |            |                                          |                                       | _                                 |
|---------------------------------------------------------------|------------|------------------------------------------|---------------------------------------|-----------------------------------|
| C02e                                                          |            | 2,225.396<br>3                           | 0.0000                                | 2,225.396<br>3                    |
| N2O.                                                          |            |                                          |                                       |                                   |
| CH4                                                           | <b>See</b> | 0.7140                                   | <b>†</b><br> <br> <br> <br> <br> <br> | 0.7140                            |
| Total CO2                                                     | lb/day     | 2,207.547<br>2                           | 0.0000                                | 2,207.547                         |
| NBio-CO2                                                      |            | 2,207.547<br>2                           | <b> </b>                              | 2,207.547<br>2                    |
| Bio- CO2                                                      |            | 0.0000 2,207.547 2,207.547 0.7140<br>2 2 | ;<br>;<br>;<br>;                      | 0.0000 2,207.547 2,207.547 0.7140 |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2o Total           |            | 0.4310                                   | 0.000.0                               | 0.4310                            |
| Fugitive Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |            | 0.4310                                   | 0.000.0                               | 0.4310                            |
| Fugitive<br>PM2.5                                             |            |                                          |                                       |                                   |
| PM10<br>Total                                                 |            | 0.4685                                   | 0.000.0                               | 0.4685                            |
| Exhaust<br>PM10                                               | ay         | 0.4685                                   | 0.000.0                               | 0.4685                            |
| Fugitive<br>PM10                                              | lb/day     |                                          |                                       |                                   |
| SO2                                                           |            | 0.0228                                   |                                       | 0.0228                            |
| <b>o</b>                                                      |            | 14.6258                                  |                                       | 14.6258                           |
| NOX                                                           |            | 0.9882 9.5246 14.6258 0.0228             |                                       | 9.5246                            |
| ROG                                                           |            | 0.9882                                   | 0.000.0                               | 0.9882                            |
|                                                               | Category   | Off-Road                                 | Paving                                | Total                             |

Page 25 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

3.6 Paving - 2024
Mitigated Construction Off-Site

|                                  | (black by |                                    | :                               |                                   | ω                          |
|----------------------------------|-----------|------------------------------------|---------------------------------|-----------------------------------|----------------------------|
| CO2e                             |           | 0.0000                             | 0.000.0                         | 153.9458                          | 153.9458                   |
| N20 CO2e                         |           |                                    | <br>                            | <br>                              |                            |
| Bio- CO2 NBio- CO2 Total CO2 CH4 | lb/day    | 0.0000                             | 0.0000                          | 3.7600e-<br>003                   | 3.7600e-<br>003            |
| Total CO2                        | /dl       | 0.0000 0.0000                      | 0.0000                          | 153.8517 153.8517 3.7600e-<br>003 | 153.8517 153.8517 3.7600e- |
| NBio-CO2                         |           | 0.0000                             | 0000.0                          | 153.8517                          | 153.8517                   |
| Bio-CO2                          |           |                                    | :<br>:<br>:<br>:<br>:<br>:<br>: |                                   |                            |
| st PM2.5 B<br>5 Total            |           | 0.0000                             | 0.000.0                         | 0.0456                            | 0.0456                     |
| Exhau<br>PM2.                    |           | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000                          | 1.1600 <del>c</del><br>003        | 1.1600e- 0<br>003          |
| PM10 Fugitive<br>Total PM2.5     |           | 0.0000                             | 0.0000                          | 0.0445                            | 0.0445                     |
| PM10<br>Total                    |           | 0.0000                             | 0.0000                          | 0.1689                            | 0.1689                     |
| Fugitive Exhaust PM10 PM10       | lb/day    | 0.0000                             | 0.0000                          | 1.2600e-<br>003                   | 1.2600e-<br>003            |
| 0.388.899                        | lb/       | 0.0000                             | 0.0000                          | 0.1677                            | 0.1677                     |
| S02                              |           | 0.0000                             | 0.0000                          | 1.5400e- C<br>003                 | 1.5400e-<br>003            |
| တ                                |           | 0.0000                             | 0.0000                          | 0.4785                            | 0.4785                     |
| ROG NOX CO S02                   |           | 0.0000 0.0000 0.0000               | 0.0000                          | 0.0329                            | 0.0535 0.0329              |
| ROG                              |           | 0.0000                             | 0.0000                          | 0.0535                            | 0.0535                     |
|                                  | Category  | Hauling                            | Vendor                          | Worker                            | Total                      |

3.7 Architectural Coating - 2024

|                                                                     |          |                          | _                                    |                                        |
|---------------------------------------------------------------------|----------|--------------------------|--------------------------------------|----------------------------------------|
| CO2e                                                                |          | 0.0000                   | 281.8443                             | 281.8443                               |
| NZO                                                                 |          |                          |                                      |                                        |
| CH4                                                                 | λe.      |                          | 0.0159                               | 0.0159                                 |
| Total CO2                                                           | Ib/day   | 0.000.0                  |                                      |                                        |
| NBio-CO2                                                            |          |                          | 281.4481 281.4481                    | 281.4481 281.4481                      |
| Bio-CO2                                                             |          |                          |                                      |                                        |
| PM10 Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e |          | 0.0000                   | 6090.0                               | 0.0609                                 |
| Exhaust<br>PM2.5                                                    |          | 0.000.0                  | 6090.0                               | 0.0609                                 |
| Fugitive<br>PM2.5                                                   |          |                          |                                      |                                        |
| PM10<br>Total                                                       |          | 0.0000                   | 6090.0                               | 6090.0                                 |
| Exhaust<br>PM10                                                     | lb/day   | 0.0000                   | 0.0609                               | 0.0609                                 |
| Fugitive<br>PM10                                                    | /gr      |                          |                                      |                                        |
| s02                                                                 |          |                          | 2.9700e-<br>003                      | 2.9700e-<br>003                        |
| 00                                                                  |          |                          | 1.8101                               | 1.8101                                 |
| ROG NOx                                                             |          |                          | 1.2188                               | 236.5923 1.2188 1.8101 2.9700e-<br>003 |
| ROG                                                                 |          | 236.4115                 | 0.1808 1.2188 1.8101 2.9700e-<br>003 | 236.5923                               |
|                                                                     | Category | Archit. Coating 236.4115 | Off-Road                             | Total                                  |

Date: 1/6/2021 1:54 PM Page 26 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.7 Architectural Coating - 2024
Unmitigated Construction Off-Site

|                                |          |                                    | _             |                          |                            |
|--------------------------------|----------|------------------------------------|---------------|--------------------------|----------------------------|
| C02e                           |          | 0.0000                             | 0.0000        | 1,642.088<br>6           | 1,642.088<br>6             |
| N20                            |          |                                    |               |                          |                            |
| CH4                            | say.     | 0.0000                             | 0.0000        | 0.0401                   | 0.0401                     |
| Total CO2                      | lb/day.  | 0.000.0                            | 0.000.0       | 1,641.085<br>2           | 1,641.085                  |
| NBio- CO2                      |          | 0.000.0                            | 0.000.0       | 1,641.085 1,641.085<br>2 | 1,641.085 1,641.085<br>2 2 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          |                                    |               |                          |                            |
| l PM2.5<br>Total               |          | 0.0000                             | 0.000         | 0.4866                   | 0.4866                     |
| Exhaus<br>PM2.5                |          |                                    | 0.000.0       | 0.0123                   | 0.0123                     |
| Fugitive<br>PM2.5              |          | 0.000.0                            | 0.000.0       | 0.4743                   | 0.4743                     |
| PM10<br>Total                  |          | 0.0000                             | 0.000.0       | 1.8018                   | 1.8018                     |
| Exhaust PM10<br>PM10 Total     | lay      | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.000.0       | 0.0134                   | 0.0134                     |
| Fugitive<br>PM10               | lb/day   | 0.000.0                            | 0.000.0       | 1.7884                   | 1.7884                     |
| S02                            |          | 0.0000                             | 0.000.0       | 0.0165                   | 0.0165                     |
| 00                             |          | 0.0000                             | 0.0000        | 5.1044                   | 5.1044                     |
| ROG NOX CO                     |          | 0.0000 0.0000 0.0000               | 0.0000 0.0000 | 0.3513                   | 0.3513                     |
| ROG                            |          | 0.0000                             | 0.0000        | 0.5707                   | 0.5707                     |
|                                | Category | Hauling                            | Vendor        | Worker                   | Total                      |

| F.32 - 1 - 1 - 1       | and a second |                          |                        |                                        |
|------------------------|--------------|--------------------------|------------------------|----------------------------------------|
| CO2e                   |              | 0.0000                   | 281.8443               | 281.8443                               |
| NZO                    |              | ••••                     |                        |                                        |
| 15-165                 |              |                          | 0.0159                 | 0.0159                                 |
| otal CO2               | Ib/day       | 0.0000                   | 81.4481                |                                        |
| NBio-CO2 Total CO2 CH4 |              |                          | 281.4481 281.4481      | 81.4481 2                              |
| Bio- CO2 N             |              |                          | 0.0000                 | 0.0000 281.4481 281.4481               |
| PM2.5<br>Total         |              | 0.000                    | 0.0609                 | 0.0609                                 |
| Exhaust<br>PM2.5       |              | 0000.0                   | 0.0609                 | 0.0609                                 |
| Fugitive I             |              | · • • • •                |                        |                                        |
| PM10<br>Total          |              | 0000.0                   | 0.0609                 | 6090'0                                 |
| Exhaust<br>PM10        | ,<br>Ae      | 0.0000                   | 6090.0                 | 0.0609                                 |
| Fugitive<br>PM10       | lb/day       |                          |                        |                                        |
| S02                    |              |                          | 1.8101 2.9700e-<br>003 | 2.9700e-<br>003                        |
| NOX                    |              |                          | 1.8101                 | 1.8101                                 |
| NOX                    |              |                          | 1.2188                 | 1.2188                                 |
| ROG                    |              | 236.4115                 | 0.1808 1.2188          | 236.5923 1.2188 1.8101 2.9700e-<br>003 |
|                        | Category     | Archit. Coating 236.4115 | Off-Road               | Total                                  |

6.3.2 Page 27 of 35 Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

3.7 Architectural Coating - 2024
Mitigated Construction Off-Site

| CO2e                           |          | 0.0000                      | 0.0000                     | 1,642.088<br>6             | 1,642.088<br>6             |
|--------------------------------|----------|-----------------------------|----------------------------|----------------------------|----------------------------|
| N2O                            |          |                             |                            | ,                          |                            |
| CH4                            | lay      | 0.0000                      | 0.0000                     | 0.0401                     | 0.0401                     |
| Total CO2                      | lb/day   | 0.000.0                     | 0.0000                     | 1,641.085 1,641.085<br>2 2 | 1,641.085 1,641.085<br>2 2 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.000.0                     | 0.000.0                    | 1,641.085<br>2             | 1,641.085                  |
| Bio-CO2                        |          |                             | 1<br>1<br>1<br>1<br>1<br>1 |                            |                            |
| PM2.5<br>Total                 |          | 0.0000                      | 0.000.0                    | 0.4866                     | 0.4866                     |
| Exhaust<br>PM2.5               |          | 0.000.0                     | 0.0000                     | 0.0123                     | 0.0123                     |
| Fugitive<br>PM2.5              |          | 0.0000 0.0000 0.0000        | 0.0000                     | 0.4743                     | 0.4743                     |
| PM10<br>Total                  |          | 0.000.0                     | 0.0000                     | 1.8018                     | 1.8018                     |
| Exhaust<br>PM10                | lb/day.  | 0.0000                      | 0.000.0                    | 0.0134                     | 0.0134                     |
| Fugitive<br>PM10               | )/qI     | 0.000.0                     | 0.0000                     | 1.7884                     | 1.7884                     |
| S02                            |          | 0.000.0                     | 0.0000                     | 0.0165                     | 0.0165                     |
| 00                             |          | 0.0000 0.0000 0.0000 0000.0 |                            | 5.1044                     | 0.3513 5.1044              |
| XON                            |          | 0.0000                      | 0.0000                     | 0.5707 0.3513 5.1044       | 0.3513                     |
| ROG                            |          | 0.0000                      | 0.0000                     | 0.5707                     | 0.5707                     |
|                                | Category | Hauling                     | Vendor                     | Worker                     | Total                      |

# 4.0 Operational Detail - Mobile

# 4.1 Mitigation Measures Mobile

5.3.2 Page 28 of 35
Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

|                                                                                            | 114.8495 0.4917 45.<br>114.8495 0.4917 45.                                                                                                            | 9.8489 45.4304 114.8495 0.4917 45.<br>9.8489 45.4304 114.8495 0.4917 45.                                     |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| .9592 0.3360 46.2951 12.2950 0.3119 12.6070<br>.9592 0.3360 46.2951 12.2950 0.3119 12.6070 | 114.8495         0.4917         45.9592         0.3360         46.295           114.8495         0.4917         45.9592         0.3360         46.295 | 9.8489 45.4304 114.8495 0.4917 45.9592 0.3360 46.295<br>9.8489 45.4304 114.8495 0.4917 45.9592 0.3360 46.295 |
|                                                                                            | 114.8495 0.4917 45.<br>114.8495 0.4917 45.                                                                                                            | 9.8489 45.4304 114.8495 0.4917 45.<br>9.8489 45.4304 114.8495 0.4917 45.                                     |

# 4.2 Trip Summary Information

|                                     | Ave      | Average Daily Trip Rate |          | Unmitigated | Mitigated  |
|-------------------------------------|----------|-------------------------|----------|-------------|------------|
| Land Use                            | Weekday  | Saturday                | Sunday   | Annual VMT  | AnnualVMT  |
| Apartments Low Rise                 | 145.75   | 154.25                  | 154.00   | 506,227     | 506,227    |
| Apartments Mid Rise                 | 4,0      | 3,773.25                | 4075.50  | 13,660,065  | 13,660,065 |
|                                     | 288.45   | 62.55                   | 31.05    | 706,812     | 706,812    |
| High Turnover (Sit Down Restaurant) | 2,368.80 | 2,873.52                | 2817.72  | 3,413,937   | 3,413,937  |
| Hotel                               | 192.00   | 187.50                  | 160.00   | 445,703     | 445,703    |
| Quality Restaurant                  | 2        | 511.92                  | 461.20   | 707,488     | 707,488    |
| Regional Shopping Center            | 528.08   | 601.44                  | 357.84   | 1,112,221   | 1,112,221  |
| Total                               | 8,050.95 | 8,164.43                | 8,057.31 | 20,552,452  | 20,552,452 |

#### 4.3 Trip Type Information

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/6/2021 1:54 PM

| 1              |                               | Ī                   |                     | ;                       | :                       | ;     | :                  | -                        |
|----------------|-------------------------------|---------------------|---------------------|-------------------------|-------------------------|-------|--------------------|--------------------------|
| % <del>-</del> | Pass-by                       | 3                   | 8                   | 4                       | 43                      | 4     | 44                 | 11                       |
| Trip Purpose % | Diverted                      | 11                  |                     | 19                      | 20                      | 38    | 18                 | 35                       |
|                | Primary                       | 98                  | 86                  | 77                      | 37                      | 58    | 38                 | 54                       |
|                | H-Worc-W H-Sorc-C H-O or C-NW | 40.60               | 40.60               | 19.00                   | 19.00                   | 19.00 | 19.00              | 19.00                    |
| Trip %         | H-SorC-C                      | 19.20               | 19.20               | 48.00                   | 72.50                   | 61.60 | 00.69              | 64.70                    |
|                | H-W or C-W                    | 40.20               | 40.20               | 33.00                   | 8.50                    | 19.40 | 12.00              | 16.30                    |
|                | r C-C H-O or C-NW             | 8.70                | 8.70                | 9.90                    | 9.90                    | 6.90  | 6.90               | 6.90                     |
| Miles          | H-S or C-C                    | 5.90                | 5.90                | 8.40                    | 8.40                    | 8.40  | 8.40               | 8.40                     |
|                | H-Wor C-W H-So                | 14.70               | 14.70               | 16.60                   | 16.60                   | 16.60 | 16.60              | 16.60                    |
|                | Land Use                      | Apartments Low Rise | Apartments Mid Rise | General Office Building | High Turnover (Sit Down | Hotel | Quality Restaurant | Regional Shopping Center |

#### 4.4 Fleet Mix

| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033          | 0.116369 | 0.209971                   | 0.044216               | 0.543088 | Regional Shopping Center               |
|----------|----------|----------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|-------------------|----------|----------------------------|------------------------|----------|----------------------------------------|
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033          | 0.116369 | 0.209971                   | 0.044216               | 0.543088 | Quality Restaurant                     |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033          | 0.116369 | 0.209971                   | 0.044216               | 0.543088 | Hotel                                  |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033          | 0.116369 | 0.209971                   | 0.044216               | 0.543088 | High Turmover (Sit Down<br>Restaurant) |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033          | 0.116369 | 0.209971                   | 0.543088 0.044216 0.20 | 0.543088 | General Office Building                |
| 0.000821 | 0.000712 | 0.116369  0.014033  0.006332  0.021166  0.033577  0.002613  0.001817  0.005285  0.000712  0.000821                   | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033          | 0.116369 | 0.543088 0.044216 0.209971 | 0.044216               | 0.543088 | Apartments Mid Rise                    |
| 0.000821 | 0.000712 | 9971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.00082                        | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033          | 0.116369 | 9971                       | 0.543088 0.044216 0.20 | 0.543088 | Apartments Low Rise                    |
| MH       | SBAS     | HHD OBUS WCY                                                                                                         | SOBO     | SUBO     | HHD      | MHD      | LHD2     | MDV LHD1 LHD2 MHD | MDV      | LDA LDT1                   | LOTA                   | LDA      | LandUse                                |

#### 5.0 Energy Detail

Historical Energy Use: N

# 5.1 Mitigation Measures Energy

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

| Sategory                  | 2      | Š                           | 3      | <u> </u> | PM10 | PM10 PM10  Ib/day | Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran<br>Loran | PM2.5            | Exhaust<br>PM2.5 | FM2.5  | 70.7<br>00.7<br>00.7<br>00.7<br>00.7<br>00.7<br>00.7<br>00.7 | Nsio- COZ | Total PM2.5 PM2.5 Total Bio-COZ NBio-COZ CH4  Total PM2.5 PM2.5 Total Bio-COZ NBio-COZ CH4 | 3¢     | N20    | C02e      |
|---------------------------|--------|-----------------------------|--------|----------|------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------|--------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------|--------|--------|-----------|
| NaturalGas<br>Mitigated   | 0.7660 | 0.7660 6.7462 4.2573 0.0418 | 4.2573 | 0.0418   |      | 0.5292 0.5292     | 0.5292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 0.5292 0.5292    | 0.5292 |                                                              | 8,355.983 | 8,355,983 8,355,983 0.1602 0.1532 8,405,638                                                | 0.1602 | 0.1532 | 8,405.638 |
| NaturalGas<br>Unmitigated | 0.7660 | 0.7660 6.7462 4.2573 0.0418 | 4.2573 | 0.0418   | ·    | 0.5292 0.5292     | 0.5292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>  <br>  <br> | 0.5292           | 0.5292 |                                                              | 8,355.983 | 8,355.983 8,355.983 0.1602 0.1532 8,405.638                                                | 0.1602 | 0.1532 | 8,405.638 |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

5.2 Energy by Land Use - NaturalGas

#### Unmitigated

| 1,37,14.3                  | 100 C        | I                      | ٠                      | 1                          | т,,                                    | •                               |                       | ı                           | T.,            |
|----------------------------|--------------|------------------------|------------------------|----------------------------|----------------------------------------|---------------------------------|-----------------------|-----------------------------|----------------|
| -CO2e                      |              | 132.4486               | 4,234.933<br>9         | 151.8884                   | 2,693.546<br>0                         | 564.4782                        | 598.5658              | 29.7778                     | 8,405.638      |
| NZO                        |              | 2.4100e-<br>003        | 0.0772                 | 2.7700e-<br>003            | 0.0491                                 | 0.0103                          | 0.0109                | 5.4000e-<br>004             | 0.1532         |
| CH4                        | Àe .         | 2.5200e-<br>003        | 0.0807                 | 2.8900e-<br>003            | 0.0513                                 | 0.0108                          | 0.0114                | 5.7000e-<br>004             | 0.1602         |
| Total CO2                  | lb/day       | 131.6662               | 4,209.916<br>4         | 150.9911                   | 2,677.634                              | 561.1436                        | 595.0298              | 29.6019                     | 8,355.983<br>2 |
| NBio- CO2                  |              | 131.6662   131.6662    | 4,209.916<br>4         | 150.9911                   | 2,677.634 2,677.634<br>2 2 2           | 561.1436                        | 595.0298              | 29.6019                     | 8,355.983<br>2 |
| Bio-CO2 NBio-CO2 Total CO2 |              |                        |                        |                            |                                        | •<br>•<br>•<br>•<br>•<br>•<br>• |                       | †<br>·<br>·<br>·<br>·<br>·  |                |
| PM2.5<br>Total             |              | 8.3400e-<br>003        | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355                          | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Exhaust<br>PM2.5           |              | 8.3400e-<br>003        | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355                          | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Fugitive<br>PM2.5          |              |                        |                        |                            |                                        |                                 |                       |                             |                |
| PM10<br>Total              |              | 8.3400e-<br>003        | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355                          | 0.0377                | 1.8700 <del>e-</del><br>003 | 0.5292         |
| Exhaust<br>PM10            | lb/day.      | 8.3400e-<br>003        | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355                          | 0.0377                | 1.8700 <del>e</del><br>003  | 0.5292         |
| Fugitive<br>PM10           | / <b>q</b> l |                        | ·                      |                            |                                        |                                 |                       |                             |                |
| <b>S</b> 02                |              | 6.6000e-<br>004        | 0.0211                 | 7.5000e-<br>004            | 0.0134                                 | 2.8100e-<br>003                 | 2.9800e-<br>003       | 1.5000e-<br>004             | 0.0418         |
| 00                         |              | 0.0439                 | 1.4033                 | 0.1057                     | 1.8743                                 | 0.3928                          | 0.4165                | 0.0207                      | 4.2573         |
| XON                        |              | 0.1031                 | 3.2978                 | 0.1258                     | 2.2314                                 | 0.4676                          | 0.4959                | 0.0247                      | 6.7463         |
| ROG                        |              | 0.0121                 | 0.3859                 | 0.0138                     | 0.2455                                 | 0.0514                          | 0.0545                | 2.7100e-<br>003             | 0992'0         |
| NaturalGa<br>s Use         | kBTU/yr      | 1119.16                | 35784.3                | 1283.42                    | 22759.9                                | 4769.72                         | 5057.75               | 251.616                     |                |
|                            | Land Use     | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel                           | Quality<br>Restaurant | Regional<br>Shopping Center | Total          |

Page 32 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

5.2 Energy by Land Use - NaturalGas

Mitigated

| C02e                         |              | 132.4486               | 4,234.933<br>9         | 151.8884                   | 2,693.546                              | 564.4782        | 598.5658              | 29.7778                     | 8,405.638      |
|------------------------------|--------------|------------------------|------------------------|----------------------------|----------------------------------------|-----------------|-----------------------|-----------------------------|----------------|
| NZO                          |              | 2.4100e-<br>003        | 0.0772                 | 2.7700e-<br>003            | 0.0491                                 | 0.0103          | 0.0109                | 5.4000e-<br>004             | 0.1532         |
| CH4                          | lay          | 2.5200e-<br>003        | 0.0807                 | 2.8900e-<br>003            | 0.0513                                 | 0.0108          | 0.0114                | 5.7000e-<br>004             | 0.1602         |
| Total CO2                    | lb/day       | 131.6662 131.6662      | 4,209.916<br>4         | 150.9911                   | 2,677.634<br>2                         | 561.1436        | 595.0298              | 29.6019                     | 8,355.983<br>2 |
| Bio- CO2 NBio- CO2 Total CO2 |              | 131.6662               | 4,209.916<br>4         | 150.9911                   | 2,677.634                              | 561.1436        | 595.0298              | 29.6019                     | 8,355.983<br>2 |
| Blo- CO2                     |              |                        |                        |                            |                                        |                 |                       | <br>                        |                |
| PM2.5<br>Total               |              | 8.3400e-<br>003        | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Exhaust<br>PM2.5             |              | 8.3400e-<br>003        | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Fugitive<br>PM2.5            |              |                        |                        |                            |                                        |                 |                       |                             |                |
| PM10<br>Total                |              | 8.3400e-<br>003        | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Exhaust<br>PM10              | brday        | 8.3400e-<br>003        | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Fugitive<br>PM10             | <b>)/9</b> 1 |                        |                        |                            |                                        |                 |                       |                             |                |
| 205                          |              | 6.6000e-<br>004        | 0.0211                 | 7.5000e-<br>004            | 0.0134                                 | 2.8100e-<br>003 | 2.9800e-<br>003       | 1.5000e-<br>004             | 0.0418         |
| 00                           |              | 0.0439                 | 1.4033                 | 0.1057                     | 1.8743                                 | 0.3928          | 0.4165                | 0.0207                      | 4.2573         |
| XON                          |              | 0.1031                 | 3.2978                 | 0.1258                     | 2.2314                                 | 0.4676          | 0.4959                | 0.0247                      | 6.7463         |
| ROG                          |              | 0.0121                 | 0.3859                 | 0.0138                     | 0.2455                                 | 0.0514          | 0.0545                | 2.7100e-<br>003             | 0.7660         |
| NaturalGa<br>s Use           | kBTU/yr      | 1.11916                | 35.7843                | 1.28342                    | 22.7599                                | 4.76972         | 5.05775               | 0.251616                    |                |
|                              | Land Use     | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel           | Quality<br>Restaurant | Regional<br>Shopping Center | Total          |

6.0 Area Detail

## 6.1 Mitigation Measures Area

Date: 1/6/2021 1:54 PM Page 33 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

| CO2e                            |          | 18,259.11<br>92                                                | 18,259.11<br>92                                   |
|---------------------------------|----------|----------------------------------------------------------------|---------------------------------------------------|
| N20 C02e                        |          | 0.3300                                                         | 0.3300                                            |
| CH4                             | /se      | 0.4874                                                         | 0.4874                                            |
| Total CO2                       | lb/day   | 18,148.59<br>50                                                | 18,148.59 50<br>50                                |
| NBio-CO2                        |          | 18,148.59<br>50                                                | 18,148.59<br>50                                   |
| Bio-CO2 NBio-CO2 Total CO2 CH4  |          | 0.0000 18,148.59 18,148.59 0.4874 0.3300 18,259.11<br>50 50 92 | 0.0000 18,148.59 18,148.59 0.4874 0.3300 18,259.1 |
| PM2.5 Bio<br>Total              |          | 1.5974                                                         | 1.5974                                            |
| Exhaust<br>PM2.5                |          | 1,5974 1,5974                                                  | 1.5974                                            |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          |                                                                |                                                   |
| PM10<br>Total                   |          | 1.5974                                                         | 1.5974                                            |
| Exhaust PM10<br>PM10 Total      | ay.      | 1.5974 1.5974                                                  | 1.5974                                            |
| Fugitive<br>PM10                | p/qı     |                                                                |                                                   |
| S02                             |          | 0.0944                                                         | 0.0944                                            |
| 8                               |          | 88.4430                                                        | 88.4430                                           |
| ROG NOx                         |          | 15.0496                                                        | 30.5020 15.0496 88.4430 0.0944                    |
| ROG                             |          | 30.5020 15.0496 88.4430 0.0944                                 | 30.5020                                           |
|                                 | Category | Mitigated                                                      | Unmitigated                                       |

6.2 Area by SubCategory

Unmitigated

| e202                       |              | 0.0000                   | 0.0000               | 18,106.96<br>50              | 152.1542                | 18,259.11<br>92              |
|----------------------------|--------------|--------------------------|----------------------|------------------------------|-------------------------|------------------------------|
| NZO                        |              |                          |                      | 0.3300                       |                         | 0.3300                       |
| CH4                        | b/day        |                          |                      | 0.3450                       | 0.1424                  | 0.4874                       |
| Total CO2                  | <b>yg</b> l  | 0.0000                   | 0.0000               | 18,000.00<br>00              | 148.5950                | 18,148.59<br>50              |
| Bio-CO2 NBio-CO2 Total CO2 |              |                          |                      | 18,000.00 18,000.00<br>00 00 | 148.5950                | 18,148.59 18,148.59<br>50 50 |
| Bio-CO2                    |              |                          |                      | 0.0000                       |                         | 0.0000                       |
| PM2.5<br>Total             |              | 0.000                    | 0.0000               | 1.1400                       | 0.4574                  | 1.5974                       |
| Exhaust<br>PM2.5           |              | 0.0000                   | 0.0000               | 1.1400                       | 0.4574                  | 1.5974                       |
| Fugitive<br>PM2.5          |              |                          |                      |                              |                         |                              |
| PM10<br>Total              |              | 0.0000                   | 0.0000               | 1.1400                       | 0.4574                  | 1.5974                       |
| Exhaust<br>PM10            | lb/day       | 0.000.0                  | 0.0000               | 1.1400                       | 0.4574                  | 1.5974                       |
| Fugitive<br>PM10           | / <b>q</b> I |                          |                      |                              |                         |                              |
| SO2                        |              |                          |                      | 0.0900                       | 4.3600e-<br>003         | 0.0944                       |
| <b>0</b> 0                 |              |                          |                      | 9.0000                       | 82.4430 4.3600e-<br>003 | 15.0496 88.4430              |
| XON                        |              |                          |                      | 14.1000 6.0000               | 0.9496                  | 15.0496                      |
| ROG                        |              | 2.2670                   | 24.1085              | 1.6500                       | 2.4766                  | 30.5020                      |
|                            | SubCategory  | Architectural<br>Coating | Consumer<br>Products | Hearth                       | Landscaping             | Total                        |

Page 34 of 35

Date: 1/6/2021 1:54 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

### 6.2 Area by SubCategory

Mitigated

| C02e                         |             | 0.0000                   | 0.0000               | 18,106.96<br>50              | 152.1542                | 18,259.11<br>92 |
|------------------------------|-------------|--------------------------|----------------------|------------------------------|-------------------------|-----------------|
| NZO                          |             |                          |                      | 0.3300                       |                         | 0.3300          |
| CH4                          | Áe          |                          |                      | 0.3450                       | 0.1424                  | 0.4874          |
| Total CO2                    | lb/day      | 0.0000                   | 0.0000               | 18,000.00<br>00              | 148.5950                | 18,148.59<br>50 |
| Bio- CO2 NBio- CO2 Total CO2 |             |                          |                      | 18,000.00 18,000.00<br>00 00 | 148.5950                | 18,148.59<br>50 |
| Bio-CO2                      |             |                          | !<br>!<br>!          | 0.0000                       |                         | 0.0000          |
| PM2.5<br>Total               |             | 0.000.0                  | 0.0000               | 1.1400                       | 0.4574                  | 1.5974          |
| Exhaust<br>PM2.5             |             | 0.0000                   | 0.000.0              | 1.1400                       | 0.4574                  | 1.5974          |
| Fugitive<br>PM2.5            |             |                          | <br>                 |                              |                         |                 |
| PM10<br>Total                |             | 0.0000                   | 0.000.0              | 1.1400                       | 0.4574                  | 1.5974          |
| Exhaust<br>PM10              | lb/day      | 0.000.0                  | 0.0000               | 1.1400                       | 0.4574                  | 1.5974          |
| Fugitive<br>PM10             | o/ql        |                          |                      |                              |                         |                 |
| 803                          |             |                          |                      | 0.0900                       | 4.3600e-<br>003         | 0.0944          |
| ဝ                            |             |                          |                      | 6.0000                       | 82.4430 4.3600e-<br>003 | 88.4430         |
| NOX                          |             |                          |                      | 14.1000 6.0000               | 0.9496                  | 15.0496         |
| ROG                          |             | 2.2670                   | 24.1085              | 1.6500                       | 2.4766                  | 30.5020         |
|                              | SubCategory | Architectural<br>Coating | Consumer<br>Products | Hearth                       | Landscaping             | Total           |

#### 7.0 Water Detail

## 7.1 Mitigation Measures Water

#### 8.0 Waste Detail

# 8.1 Mitigation Measures Waste

### 9.0 Operational Offroad

| Fuel Type     |
|---------------|
| Load Factor   |
| Horse Power   |
| Days∕Year     |
| Hours/Day     |
| Number        |
| duipment Type |
| Equibm        |

# 10.0 Stationary Equipment

Page 35 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

# Fire Pumps and Emergency Generators

| Equipment Type Hours/I     | Day Hours/Year         | Horse Power Load Factor Fuel Type |
|----------------------------|------------------------|-----------------------------------|
| Boilers                    |                        |                                   |
| Equipment Type Heat Input/ | ut/Day Heat Input/Year | Boiler Rating Fuel Type           |

#### **User Defined Equipment**

Number Equipment Type

#### 11.0 Vegetation

Date: 1/6/2021 1:54 PM

Page 1 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

# Village South Specific Plan (Proposed)

Los Angeles-South Coast County, Winter

### 1.0 Project Characteristics

#### 1.1 Land Usage

| Land Uses         Size           General Office Building         45.00           High Turnover (Sit Down Restaurant)         36.00           Apartments Low Rise         50.00           Apartments Low Rise         25.00           Apartments Mid Rise         975.00 | Metric 1000sqft 1000sqft Room 1000sqft Dwelling Unit | Lot Acreage<br>1.03<br>0.83<br>1.67<br>0.18<br>1.56<br>25.66 | Floor Surface Area 45,000.00 36,000.00 72,600.00 8,000.00 25,000.00 | Population 0 0 0 0 72 72 72 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|
| 56.00                                                                                                                                                                                                                                                                   | 1000sqft                                             | 1.29                                                         | 56,000.00                                                           | 0                           |
|                                                                                                                                                                                                                                                                         |                                                      |                                                              |                                                                     |                             |

# 1.2 Other Project Characteristics

| Precipitation Freq (Days) 33 | Operational Year 2028 |                            | .9 N2O Intensity 0.006 (Ib/MWhr) |
|------------------------------|-----------------------|----------------------------|----------------------------------|
| 2.2                          |                       |                            | 0.029                            |
| Wind Speed (m/s)             |                       | Southern California Edison | CH4 Intensity<br>(Ib/MWhr)       |
| Urban                        | თ                     | Southern C                 | 702.44                           |
| Urbanization                 | Climate Zone          | Utility Company            | CO2 Intensity<br>(Ib/MWhr)       |

# 1.3 User Entered Comments & Non-Default Data

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

Construction Phase - See SWAPE comment regarding individual construction phase lengths.

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use -

Construction Off-road Equipment Mitigation - See SWAPE comment on construction-related mitigation.

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

| Table Name      | Cólumi Name       | Default Value | New Value |
|-----------------|-------------------|---------------|-----------|
| tblFireplaces   | FireplaceWoodMass | 1,019.20      | 0.00      |
| tblFireplaces   | FireplaceWoodMass | 1,019.20      | 0.00      |
| tblFireplaces   | NumberWood        | 1.25          | 0.00      |
| tblFireplaces   | NumberWood        | 48.75         | 0.00      |
| tblVehicleTrips | ST_TR             | 7.16          | 6.17      |
| tbl/ehicleTrips | ST_TR             | 6.39          | 3.87      |
| tblVehicleTrips | ST_TR             | 2.46          | 1.39      |
| tbl/ehicleTrips | ST_TR             | 158.37        | 79.82     |
| tblVehicleTrips | ST_TR             | 8.19          | 3.75      |
| tblVehicleTrips | ST_TR             | 94.36         | 63.99     |
| tbl/ehicleTrips | ST_TR             | 49.97         | 10.74     |
| tblVehicleTrips | SU_TR             | 6.07          | 6.16      |
| tblVehicleTrips | SU_TR             | 5.86          | 4.18      |
| tblVehicleTrips | SU_TR             | 1.05          | 0.69      |
| tblVehicleTrips | SU_TR             | 131.84        | 78.27     |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| 3.20            | 57.65           | 6.39            | 5.83            | 4.13            | 6.41            | 65.80           | 3.84            | 62.64           | 9.43            | 0.00            | 0.00            | 0.00               | 0.00               | 0.00             | 0.00             | 0.00              | 0.00              |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------------------|------------------|------------------|-------------------|-------------------|
| 5.95            | 72.16           | 25.24           | 6.59            | 6.65            | 11.03           | 127.15          | 8.17            | 89.95           | 42.70           | 1.25            | 48.75           | 1.25               | 48.75              | 25.00            | 25.00            | 09.666            | 09.666            |
| SU_TR           | SU_TR           | SU_TR           | WD_TR           | NumberCatalytic | NumberCatalytic | NumberNoncatalytic | NumberNoncatalytic | WoodstoveDayYear | WoodstoveDayYear | WoodstoveWoodMass | WoodstoveWoodMass |
| tblVehicleTrips | tblWoodstoves   | tblWoodstoves   | tblWoodstoves      | tblWoodstoves      | tblWoodstoves    | tblWoodstoves    | tblWoodstoves     | tblWoodstoves     |

2.0 Emissions Summary

Page 4 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.1 Overall Construction (Maximum Daily Emission)

#### Unmitigated Construction

| CO2e                         |        | 0.0000 6,270.221<br>4         | 14,657.26<br>63              | 14,235.91<br>60              | 2,370.355<br>0             | 14,657.26<br>63              |
|------------------------------|--------|-------------------------------|------------------------------|------------------------------|----------------------------|------------------------------|
| NZO                          |        | 0.0000                        | 0.0000                       | 0.0000                       | 0.0000                     | 0.0000                       |
| C <u>F</u> 4                 | laý    | 1.9491                        | 1.9499                       | 1.0230                       | 0.7175                     | 1.9499                       |
| Total CO2                    | lb/day | 6,221.493<br>7                | 14,630.30<br>99              | 14,210.34 14,210.34<br>24 24 | 2,352.417 2,352.417<br>8 8 | 14,630.30<br>99              |
| Bio- CO2 NBio- CO2 Total CO2 |        | 0.0000 6,221.493 6,221.493    | 14,630.30 14,630.30<br>99 99 | 14,210.34<br>24              | 2,352.417<br>8             | 14,630.30 14,630.30<br>99 99 |
| Bio-CO2                      |        | 0.0000                        | 0.0000                       | 0.0000                       | 0.0000                     | 0.0000                       |
| PM2.5<br>Total               |        | 1.8824 11.8664                | 5.1615                       | 3.3708                       | 0.5476                     | 11.8664                      |
| Exhaust<br>PM2.5             |        | 1.8824                        | 1.5057                       | 0.7328                       | 0.4322                     | 1.8824                       |
| Fugitive<br>PM2.5            |        | 9.9840                        | 3.6558                       | 2.6381                       | 0.4743                     | 9.9840                       |
| PM10<br>Total                |        | 20.3135                       | 10.7736                      | 10.6488                      | 1.8628                     | 20.3135                      |
| Exhaust<br>PM10              | ib/day | 2.0461                        | 1.6366                       | 0.7800                       | 0.4698                     | 2.0461                       |
| Fugitive<br>PM10             | //qi   | 18.2675                       | 9.8688                       | 9.8688                       | 1.7884                     | 18.2675                      |
| S02                          |        | 0.0642                        | 0.1455                       | 0.1413                       | 0.0243                     | 0.1455                       |
| 03                           |        | 31.6150                       | 47.3319                      | 44.5936                      | 15.0611                    | 47.3319                      |
| ×ON                          |        | 4.2865 46.4651 31.6150 0.0642 | 38.9024                      | 26.4914                      | 9.5610                     | 237.2328 46.4651             |
| ROG                          |        | 4.2865                        | 5.7218                       | 5.2705                       | 237.2328                   | 237.2328                     |
|                              | Year   | 2021                          | 2022                         | 2023                         | 2024                       | Maximum                      |

Date: 1/6/2021 1:49 PM Page 5 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.1 Overall Construction (Maximum Daily Emission)

#### Mitigated Construction

| CO2e                         |        | 6,270.221<br>4             | 14,657.26<br>63              | 14,235.91<br>60              | 2,370.355                  | 14,657.26<br>63              |
|------------------------------|--------|----------------------------|------------------------------|------------------------------|----------------------------|------------------------------|
| N20                          |        | 0.0000 6,270.221           | 0.0000                       | 0.0000                       | 0.0000                     | 0.0000                       |
| CH4.                         | lb/day | 1.9491                     | 1.9499                       | 1.0230                       | 0.7175                     | 1.9499                       |
| Total CO2                    | )/qI   | 6,221.493<br>7             | 14,630.30 14,630.30<br>99 99 | 14,210.34 14,210.34<br>24 24 | 2,352.417 2,352.417<br>8 8 | 14,630.30 14,630.30<br>99 99 |
| Bio- CO2 NBio- CO2 Total CO2 |        | 0.0000 6,221.493 6,221.493 | 14,630.30<br>99              | 14,210.34<br>24              | 2,352.417<br>8             | 14,630.30<br>99              |
| Bio-CO2                      |        | 0.0000                     | 00000                        | 0.0000                       | 0.0000                     | 0.0000                       |
| PM2.5<br>Total               |        | 11.8664                    | 5.1615                       | 3.3708                       | 0.5476                     | 11.8664                      |
| Exhaust<br>PM2.5             |        | 1.8824                     | 1.5057                       | 0.7328                       | 0.4322                     | 1.8824                       |
| Fugitive<br>PM2.5            |        | 9.9840                     | 3.6558                       | 2.6381                       | 0.4743                     | 9.9840                       |
| PM10<br>Total                |        | 20.3135                    | 10.7736                      | 10.6488                      | 1.8628                     | 20.3135                      |
| Exhaust<br>PM10              | lb/day | 2.0461                     | 1,6366                       | 0.7800                       | 0.4698                     | 2.0461                       |
| Fugitive<br>PM10             | /qi    | 18.2675                    | 9.8688                       | 9.8688                       | 1.7884                     | 18.2675                      |
| <b>3</b> 02                  |        | 0.0642                     | 0.1455                       | 0.1413                       | 0.0243                     | 0.1455                       |
| 8                            |        | 31.6150                    | 47.3319                      | 44.5936                      | 15.0611                    | 47.3319                      |
| NOX                          |        | 4.2865 46.4651 31.6150     | 38.9024                      | 26.4914                      | 237.2328 9.5610            | 46.4651                      |
| ROG                          |        | 4.2865                     | 5.7218                       | 5.2705                       | 237.2328                   | 237.2328                     |
|                              | Year   | 2021                       | 2022                         | 2023                         | 2024                       | Maximum                      |

| F                   |                      |
|---------------------|----------------------|
| CO2e                | 0.00                 |
| N20                 | 0.00                 |
| CH4                 | 0.00                 |
| io-CO2 Total CO2    | 0.00                 |
| 12                  | 0.00                 |
| Bio- CO2            | 0.00                 |
| PM2.5<br>Total      | 0.00                 |
| Exhaust<br>PM2.5    | 0.00                 |
| Fugitive F<br>PM2.5 | 0.00                 |
| PW10<br>Total       | 0.00                 |
| Exhaust<br>PM10     | 0.00                 |
| Fugitive<br>PM10    | 0.00                 |
| S02                 | 0.00                 |
| 00                  | 0.00                 |
| NOX                 | 0.00                 |
| ROG                 | 00.0                 |
|                     | Percent<br>Reduction |

Date: 1/6/2021 1:49 PM Page 6 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.2 Overall Operational Unmitigated Operational

| CO2e                             |          | 18,259.11<br>92                            | 8,405.638<br>7             | 47,972.68<br>39              | 74,637.44<br>17                     |
|----------------------------------|----------|--------------------------------------------|----------------------------|------------------------------|-------------------------------------|
| NZO                              |          | 0.3300 18,259.11<br>92                     | 0.1532                     |                              | 0.4832                              |
| CH4                              | lb/day   | 0.4874                                     | 0.1602                     | 2.1953                       | 2.8429                              |
| Total CO2                        | )/q      | 18,148.59<br>50                            | 8,355.983 8,355.983<br>2 2 | 47,917.80<br>05              | 74,422.37<br>87                     |
| NBio-CO2                         |          | 0.0000 18,148.59 18,148.59 0.4874<br>50 50 | 8,355.983<br>2             | 47,917.80 47,917.80<br>05 05 | 0.0000 74,422.37 74,422.37<br>87 87 |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.000.0                                    | ;<br>;<br>;                |                              | 0.0000                              |
| Exhaust PM2.5<br>PM2.5 Total     |          | 1.5974                                     | 0.5292                     | 12.6083                      | 14.7349                             |
| Exhaust<br>PM2.5                 |          | 1.5974                                     | 0.5292                     | 0.3132                       | 2.4399                              |
| Fugitive<br>PM2.5                |          |                                            |                            | 12.2950                      | 2.4640 48.4231 12.2950              |
| PM10<br>Total                    |          | 1.5974                                     | 0.5292                     | 46.2965                      | 48.4231                             |
| Exhaust<br>PM10                  | lay      | 1.5974                                     | 0.5292                     | 0.3373                       | 2.4640                              |
| Fugitive<br>PM10                 | (lb/day  |                                            |                            | 45.9592                      | 45.9592                             |
| S02                              |          | 0.0944                                     | 0.0418                     | 0.4681                       | 0.6043                              |
| 8                                |          | 88.4430                                    | 4.2573                     | 45.9914 110.0422 0.4681      | 202.7424                            |
| NOX                              |          | 30.5020 15.0496 88.4430 0.0944             | 6.7462                     | 45.9914                      | 40.7912 67.7872 202.7424 0.6043     |
| ROG                              |          | 30.5020                                    | 0.7660                     | 9.5233                       | 40.7912                             |
|                                  | Category | Area                                       | Energy                     | Mobile                       | Total                               |

#### Mitigated Operational

| 2000                           | No. of the   |                                            |                                   |                                |                              |
|--------------------------------|--------------|--------------------------------------------|-----------------------------------|--------------------------------|------------------------------|
| CO2e                           |              | 18,259.11<br>92                            | 8,405.638<br>7                    | 47,972.68<br>39                | 74,637.44<br>17              |
| N2O.                           |              | 0.3300                                     | 0.1532                            | i<br> <br>                     | 0.4832                       |
| CH4                            | Ae .         | 0.4874                                     | 0.1602                            | 2.1953                         | 2.8429                       |
| Total CO2                      | lb/day       | 18,148.59<br>50                            | 8,355.983                         | 47,917.80<br>05                | 74,422.37<br>87              |
| NBio- CO2                      |              | 18,148.59<br>50                            | 8,355,983 8,355,983 0.1602<br>2 2 | 47,917.80 47,917.80<br>05 05   | 74,422.37 74,422.37<br>87 87 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |              | 0.0000 18,148.59 18,148.59 0.4874<br>50 50 |                                   |                                | 0.0000                       |
| PM2.5<br>Total                 |              | 1.5974 1.5974                              | 0.5292                            | 12.6083                        | 14.7349                      |
| Exhaust<br>PM2.5               |              | 1.5974                                     | 0.5292                            | 0.3132                         | 2.4399                       |
| Fugitive<br>PM2.5              |              |                                            | <br>                              | 12.2950                        | 12.2950                      |
| PM10<br>Total                  |              | 1.5974                                     | 0.5292                            | 46.2965                        | 48.4231 12.2950              |
| Exhaust<br>PM10                | lb/day       | 1.5974                                     | 0.5292                            | 0.3373                         | 2.4640                       |
| Fugitive<br>PM10               | y <b>q</b> l |                                            |                                   | 45.9592                        | 45.9592                      |
| S02                            |              | 0.0944                                     | 0.0418                            | 0.4681                         | 0.6043                       |
| တ                              |              | 88.4430                                    | 4.2573                            | 110.0422                       | 202.7424                     |
| XON                            |              | 30.5020 15.0496 88.4430 0.0944             | 0.7660 6.7462                     | 9.5233 45.9914 110.0422 0.4681 | 40.7912 67.7872 202.7424     |
| ROG                            |              | 30.5020                                    | 0.7660                            | 9.5233                         | 40.7912                      |
|                                | Category     | Area                                       | Energy                            | Mobile                         | Total                        |

Page 7 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| CO2e              | 00'0                 |
|-------------------|----------------------|
| N20               | 00'0                 |
| CH4               | 0.00                 |
| Total CO2         | 0.00                 |
| NBio-CO2          | 00'0                 |
| Bio- CO2          | 0.00                 |
| PM2.5<br>Total    | 0.00                 |
| Exhaust<br>PM2.5  | 0.00                 |
| Fugitive<br>PM2.5 | 0.00                 |
| PIM10<br>Total    | 0.00                 |
| Exhaust<br>PM10   | 0.00                 |
| Fugitive<br>PM10  | 0.00                 |
| S02               | 0.00                 |
| 03                | 0.00                 |
| NOX               | 0.00                 |
| RoG               | 0.00                 |
|                   | Percent<br>Reduction |

#### 3.0 Construction Detail

#### **Construction Phase**

| Scription                 |            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                       |                       |                                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        |
|---------------------------|------------|-----------------------------------------|-----------------------|-----------------------|---------------------------------------|------------------------------------------------|
| Phase Description         |            | ·<br>·<br>·<br>·<br>·<br>·<br>·         | •<br>•<br>•<br>•<br>• | ;<br>;<br>;<br>;<br>; | · · · · · · · · · · · · · · · · · · · | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Num Days                  | 30         | 20                                      | 45                    | 200                   | 35                                    | 35                                             |
| Num Days Num Days<br>Week | 5          | 5                                       | 5                     | 5                     | 5                                     | 5                                              |
| End Date                  | 10/12/2021 | 11/9/2021                               | 1/11/2022             | 12/12/2023            | 1/30/2024                             | 3/19/2024                                      |
| Start Date                | 9/1/2021   | 10/13/2021                              | 11/10/2021            | 1/12/2022             | 12/13/2023                            | 1/31/2024                                      |
| Phase Type                | Demolition | aration                                 | <br>                  | Building Construction | Paving                                | Architectural Coating                          |
| Phase Name                |            | Site Preparation                        | Grading               | Building Construction | Paving                                | Architectural Coating                          |
| Phase<br>Number           | _          | 2                                       | n                     | 4                     | 5                                     | 9                                              |

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

#### OffRoad Equipment

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| Phase Name            | Offroad Equipment Type    | Amount | Usage Hours | Horse Power | Load Factor |
|-----------------------|---------------------------|--------|-------------|-------------|-------------|
| Demolition            | Concrete/Industrial Saws  | _      | 8.00        | 81          | 0.73        |
| Demolition            | Excavators                | (C)    | 8.00        | 158         | 0.38        |
| Demolition            | Rubber Tired Dozers       | 2      | 8.00        | 247         | 0.40        |
| Site Preparation      | Rubber Tired Dozers       | (C)    | 8.00        | 247         | 0.40        |
| Site Preparation      | Tractors/Loaders/Backhoes | 1      | 8.00        | 76          | 0.37        |
| Grading               | Excavators                | 2      | 8.00        | 158         | 0.38        |
| Grading               | Graders                   |        | 8.00        | 187         | 0.41        |
| Grading               | Rubber Tired Dozers       |        | 8.00        | 247         | 0.40        |
| Grading               | Scrapers                  | 2      | 8.00        | 367         | 0.48        |
| Grading               | Tractors/Loaders/Backhoes | 2      | 8.00        | 97          | 0.37        |
| Building Construction | Cranes                    |        | 7.00        | 231         | 0.29        |
| Building Construction | Forklifts                 | ဇ      | 8.00        | 68          | 0.20        |
| Building Construction | Generator Sets            |        | 8.00        | 84          | 0.74        |
| Building Construction | Tractors/Loaders/Backhoes | r      | 7.00        | 97          | 0.37        |
| Building Construction | Welders                   |        | 8.00        | 46          | 0.45        |
| Paving                | Pavers                    | 2      | 8.00        | 130         | 0.42        |
| Paving                | Paving Equipment          | 2      | 8.00        | 132         | 0.36        |
| Paving                | Rollers                   | 2      | 8.00        | 80          | 0.38        |
| Architectural Coating | Air Compressors           | 1      | 9.00        | 78          | 0.48        |

Trips and VMT

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| Phase Name            | Phase Name Offroad Equipment Worker Trip Count Number | Worker Trip<br>Number | Vendor Trip<br>Number |        | Hauling Trip Worker Trip<br>Number Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Vendor Trip Hauling Trip Worker Vehicle<br>Length Length Class | 1.64    | Vendor Hauling Vehicle Class |
|-----------------------|-------------------------------------------------------|-----------------------|-----------------------|--------|-------------------------------------------|-----------------------|------------------------|----------------------------------------------------------------|---------|------------------------------|
| <b>Demolition</b>     | 9                                                     | 15.00                 | 0.00                  | 458.00 | 14.70                                     | 6.90                  |                        | 20.00 LD_Mix                                                   | HDT_Mix | ННОТ                         |
| Site Preparation      |                                                       | 18.00                 | 00.0                  | 00.00  | 14.70                                     | 6.90                  |                        | 20.00 LD_Mix                                                   | HDT_Mix | HHDT                         |
| Grading               | 80                                                    | 20.00                 | 0.00                  |        | 14.70                                     | 9.90                  |                        | 20.00 LD_Mix                                                   | HDT_Mix | HHDT                         |
| Building Construction | 6                                                     | 801.00                | 143.00                | 0.00   | 14.70                                     | 06.9                  |                        | 20.00 LD_Mix                                                   | HDT_Mix | HHDT                         |
| Paving                | 9                                                     | 15.00                 | 0.00                  | 0.00   | 14.70                                     | 06.9                  |                        | 20.00 LD_Mix                                                   | HDT_Mix | HHDT                         |
| Architectural Coating |                                                       | 160.00                | 00.00                 | 00.00  | 14.70                                     | 9.90                  |                        | 20.00 LD_Mix                                                   | HDT_Mix | HHDT                         |

# 3.1 Mitigation Measures Construction

3.2 Demolition - 2021

| CO2e.                                      |          | 0.0000        | 3,774.317                                            | 3,774.317<br>4             |
|--------------------------------------------|----------|---------------|------------------------------------------------------|----------------------------|
| NZO CO2e                                   |          |               |                                                      |                            |
| Bio- CO2 NBio- CO2 Total CO2 CH4           | lay      |               | 1.0549                                               | 1.0549                     |
| Total CO2                                  | Ib/day   | 0.0000        | 3,747.944<br>9                                       | 3,747.944 3,747.944<br>9 9 |
| NBio-CO2                                   |          |               | 3,747.944 3,747.944<br>9 9                           | 3,747.944<br>9             |
|                                            |          |               |                                                      |                            |
| PM2.5<br>Total                             |          | 0.5008        | 1.4411                                               | 1.9419                     |
| Exhaust<br>PM2.5                           |          | 0.000.0       | 1.4411                                               | 1.4411                     |
| Fugitive<br>PM2.5                          |          | 0.5008        | <br>                                                 | 0.5008                     |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |          | 3.3074        | 1.5513                                               | 4.8588                     |
| Exhaust<br>PM10                            | ay       | 0.000.0       | 1.5513                                               | 1.5513                     |
| Fugitive Exhaust<br>PM10 PM10              | lb/day   | 3.3074        | <b>;</b><br> <br> <br> <br> <br> <br> <br> <br> <br> | 3.3074                     |
| s02                                        |          |               | 0.0388                                               | 0.0388                     |
| တ                                          |          |               | 21.5650                                              |                            |
| XON                                        |          |               | 3.1651 31.4407 21.5650                               | 3.1651 31.4407 21.5650     |
| RoG                                        |          |               | 3.1651                                               | 3.1651                     |
|                                            | Category | Fugitive Dust | Off-Road                                             | Total                      |

Date: 1/6/2021 1:49 PM Page 10 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.2 Demolition - 2021
Unmitigated Construction Off-Site

| CO2e                             |          | 1,272.125<br>2              | 0.0000  | 160.9560          | 1,433.081<br>2             |
|----------------------------------|----------|-----------------------------|---------|-------------------|----------------------------|
| NZO                              |          |                             |         |                   |                            |
| СН4                              | lb/day   | 0.0908                      | 0.0000  | 4.7300e-<br>003   | 0.0955                     |
| Total CO2                        | IB/C     | 1,269.855 1,269.855<br>5 5  | 0.0000  | 160.8377 160.8377 | 1,430.693 1,430.693<br>2 2 |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 1,269.855<br>5              | 0.000.0 | 160.8377          | 1,430.693<br>2             |
| Bio- CO2                         |          |                             |         |                   |                            |
| PM2.5<br>Total                   |          | 0.0854                      | 0.0000  | 0.0457            | 0.1311                     |
| Exhaust<br>PM2.5                 |          | 0.0122                      | 0.000.0 | 1.2500e- (<br>003 | 0.0135                     |
| Fugitive Exhaust PM2.5           |          | 0.0732 0.0122               | 0.000.0 | 0.0445            | 0.1176                     |
| PM10<br>Total                    |          | 0.0128 0.2797               | 0.000.0 | 0.1690            | 0.4487                     |
| Exhaust<br>PM10                  | lb/day   | 0.0128                      | 0.0000  | 1.3500e-<br>003   | 0.0141                     |
| Fugitive<br>PM10                 | lb/c     | 0.2669                      | 0.0000  | 0.1677            | 0.4346                     |
| S02                              |          | 0.0117                      | 0.0000  | 1.6100e- (<br>003 | 0.0133                     |
| ဇ၁                               |          | 1.0182                      | 0.0000  | 0.5524            | 1.5706                     |
| XON                              |          | 4.1454                      | 0.0000  | 0.0489            | 0.2019 4.1943              |
| ROG                              |          | 0.1304 4.1454 1.0182 0.0117 | 0.0000  | 0.0715            | 0.2019                     |
|                                  | Category | Hauling                     | Vendor  | Worker            | Total                      |

| CO2e                                    |          | 0.0000                                  | 3,774.317                         | 3,774.317<br>4                  |
|-----------------------------------------|----------|-----------------------------------------|-----------------------------------|---------------------------------|
| NZO                                     |          |                                         |                                   |                                 |
| 100000000000000000000000000000000000000 | , ke     |                                         | 1.0549                            | 1.0549                          |
| Bio-CO2 NBio-CO2 Total CO2 CH4          | lb/day   | 0.000.0                                 | 3,747.944 3,747.944 1.0549<br>9 9 | 3,747.944<br>9                  |
| NBio-CO2                                |          |                                         | 3,747.944<br>9                    | 0.0000 3,747.944 3,747.944<br>9 |
| Bio-CO2                                 |          |                                         | 0.0000                            | 0.000                           |
| PM2.5<br>Total                          |          | 0.5008                                  | 1,4411 1,4411                     | 1.9419                          |
| Exhaust<br>PM2.5                        |          | 3074 0.0000 3.3074 0.5008 0.0000 0.5008 | 1.4411                            | 1.4411                          |
| Fugitive<br>PM2.5                       |          | 0.5008                                  |                                   | 0.5008 1.4411                   |
| PM10<br>Total                           |          | 3.3074                                  | 1.5513                            | 4.8588                          |
| Exhaust<br>PM10                         | Ib/day   | 0.000.0                                 | 1.5513                            | 1.5513                          |
| Fugitive<br>PM10                        | lb/gl    | 3.3074                                  |                                   | 3.3074                          |
| S02                                     |          |                                         | 0.0388                            | 0.0388                          |
| တ                                       |          |                                         | 21.5650                           | 3.1651 31.4407 21.5650 0.0388   |
| ROG NOX                                 |          |                                         | 3.1651 31.4407 21.5650            | 31.4407                         |
| ROG                                     |          |                                         | 3.1651                            | 3.1651                          |
|                                         | Саtедолу | Fugitive Dust                           | Off-Road                          | Total                           |

CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Page 11 of 35

Date: 1/6/2021 1:49 PM

3.2 Demolition - 2021

Mitigated Construction Off-Site

| CO2e                                                  |              | 1,2 <b>7</b> 2.125<br>2     | 0.0000               | 160.9560                      | 1,433.081<br>2           |
|-------------------------------------------------------|--------------|-----------------------------|----------------------|-------------------------------|--------------------------|
| .N2O                                                  |              |                             |                      |                               |                          |
| CH4                                                   | lay          | 0.0908                      | 0.0000               | 4.7300e-<br>003               | 0.0955                   |
| Total CO2                                             | lb/day       | 1,269.855 1,269.855<br>5 5  | 0.0000               | 160.8377 160.8377 4.7300e-    | 1,430.693 1,430.693<br>2 |
| NBio-CO2                                              |              | 1,269.855<br>5              | 0.0000               | 160.8377                      | 1,430.693                |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 N20 CO2e Total |              |                             | 1                    |                               |                          |
|                                                       |              | 0.0854                      | 0.0000               | 0.0457                        | 0.1311                   |
| Exhaust<br>PM2.5                                      |              | 0.0122                      | 0.000                | 1.2500e-<br>003               | 0.0135                   |
| Fugitive<br>PM2.5                                     |              | 0.0732 0.0122               | 0.0000               | 0.0445                        | 0.1176                   |
| PM10<br>Total                                         |              | 0.2797                      | 0.0000               | 0.1690                        | 0.4487                   |
| Exhaust<br>PM10                                       | lb/day       | 0.0128                      | 0.0000               | 1.3500e-<br>003               | 0.0141                   |
| Fugitive<br>PM10                                      | ) <b>(</b> ] | 0.2669                      | 0.0000               | 0.1677                        | 0.4346                   |
| <b>S</b> 02                                           |              | 0.0117                      | 0.0000               | 1.6100e-<br>003               | 0.0133                   |
| 00                                                    |              | 1.0182                      | 0.0000               | 0.5524                        | 1,5706                   |
| NOX                                                   |              | 0.1304 4.1454 1.0182 0.0117 | 0.0000 0.0000 0.0000 | 0.0489 0.5524 1.6100e-<br>003 | 4.1943                   |
| ROG                                                   |              | 0.1304                      | 0.0000               | 0.0715                        | 0.2019                   |
|                                                       | Category     | Hauling                     | Vendor               | Worker                        | Total                    |

3.3 Site Preparation - 2021

| CO2e                             |          | 0.000                               | 3,715.457<br>3           | 3,715.457<br>3                        |
|----------------------------------|----------|-------------------------------------|--------------------------|---------------------------------------|
| NZO                              |          |                                     | 3,7                      | 3,                                    |
|                                  | ۸        |                                     | 1.1920                   | 1.1920                                |
| Bio- CO2 NBio- CO2 Total CO2 CH4 | Ibiday   | 0.0000                              | 3,685.656                |                                       |
| NBio-CO2                         |          |                                     | 3,685.656 3,685.656<br>9 | 3,685.656 3,685.656<br>9              |
| Bio- CO2                         |          |                                     |                          |                                       |
| PM2.5<br>Total                   |          | 9.9307                              | 1.8809                   | 11.8116                               |
| Exhaust<br>PM2.5                 |          | 0.0000 18.0663 9.9307 0.0000 9.9307 | 1.8809                   | 1.8809                                |
| Fugitive<br>PM2.5                |          | 9.9307                              |                          |                                       |
| PM10<br>Total                    |          | 18.0663                             | 2.0445                   | 20.1107 9.9307                        |
| Exhaust<br>PM10                  | lb/day   | 0.000.0                             | 2.0445                   | 2.0445                                |
| SO2 Fugitive<br>PM10             | lb/c     | 18.0663                             |                          | 18.0663                               |
| S02                              |          |                                     | 0.0380                   | 0.0380                                |
| 00                               |          |                                     | 21.1543                  | 21.1543                               |
| R0G NOx CO                       |          |                                     | 40.4971 21.1543 0.0380   | 3.8882 40.4971 21.1543 0.0380 18.0663 |
| ROG                              |          |                                     | 3.8882                   | 3.8882                                |
|                                  | Category | Fugitive Dust                       | Off-Road                 | Total                                 |

Date: 1/6/2021 1:49 PM Page 12 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.3 Site Preparation - 2021 Unmitigated Construction Off-Site

| CO2e                            |          | 0.0000               | 0.0000      | 193.1472          | 193.1472               |
|---------------------------------|----------|----------------------|-------------|-------------------|------------------------|
| NZO                             |          |                      |             |                   |                        |
| CH4                             | (a)      | 0.0000               | 0.0000      | 5.6800e-<br>003   | 5.6800e-<br>003        |
| Total CO2                       | lb/day   | 0.0000               | 0.0000      | 193.0052 193.0052 | 193.0052               |
| Bio- CO2 NBio- CO2 Total CO2    |          | 0.0000               | 0.0000      | 193.0052          | 193.0052               |
|                                 |          |                      | :<br>:<br>: |                   |                        |
| PM2.5<br>Total                  |          | 0.000.0              | 0.0000      | 0.0549            | 0.0549                 |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.0000               | 0.0000      | 1.5000e-<br>003   | 1.5000e-<br>003        |
| Fugitive<br>PM2.5               |          | 0.0000 0.0000 0.0000 | 0.0000      | 0.0534            | 0.0534                 |
| PM10<br>Total                   |          | 0.0000               | 0.0000      | 0.2028            | 0.2028                 |
| Exhaust<br>PM10                 | lb/day   | 0.0000               | 0.0000      | 1.6300e-<br>003   | 1.6300e- 0.<br>003     |
| SO2 Fugitive<br>PM10            | Ib/      | 0.0000               | 0.0000      | 0.2012            | 0.2012                 |
| S02                             |          | 0.0000               | 0.0000      | 9 1.9400e-<br>003 | 0.6629 1.9400e-<br>003 |
| 00                              |          | 0.0000               | 0.00        | 0.6629            | 0.6629                 |
| ROG NOX                         |          | 0.0000               | 0.0000      | 0.0587            | 0.0587                 |
| ROG                             |          | 0.0000               | 0.0000      | 0.0858            | 0.0858                 |
|                                 | Category | Hauling              | Vendor      | Worker            | Total                  |

| C02e                                    |          | 0.0000                               | 3,715.457                 | 3,715.457<br>3                        |
|-----------------------------------------|----------|--------------------------------------|---------------------------|---------------------------------------|
| N2O                                     |          |                                      |                           |                                       |
| CH4                                     | ٨        |                                      | 1.1920                    | 1.1920                                |
| Fotal CO2                               | lb/day   | 0.0000                               | 3,685.656                 | 3,685.656                             |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e |          |                                      | 3,685,656 13,685,656<br>9 | 0.0000 3,685.656 3,685.656            |
| Bio- CO2                                |          |                                      | 0.0000                    | 0.0000                                |
| PM2.5 B<br>Total                        |          | 9.9307                               | 1.8809                    | 11.8116                               |
| Exhaust<br>PM2.5                        |          | 0.000.0                              | 1.8809                    | 9.9307 1.8809 11.8116                 |
| Fugitive Exhaust<br>PM2.5 PM2.5         |          | 18.0663 0.0000 18.0663 9.9307 0.0000 |                           | 9.9307                                |
| PM10<br>Total                           |          | 18.0663                              | 2.0445                    | 20.1107                               |
| Exhaust<br>PM10                         | lb/day   | 0.0000                               | 2.0445                    | 2.0445                                |
| Fugitive<br>PM10                        | JP/K     | 18.0663                              |                           | 18.0663                               |
| S02                                     |          |                                      | 0.0380                    | 0.0380                                |
| 00                                      |          |                                      | 21.1543                   | 21.1543                               |
| NOx                                     |          |                                      | 3.8882 40.4971 21.1543    | 3.8882 40.4971 21.1543 0.0380 18.0663 |
| RoG                                     |          |                                      | 3.8882                    | 3.8882                                |
|                                         | Category | Fugitive Dust                        | Off-Road                  | Total                                 |

Date: 1/6/2021 1:49 PM Page 13 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.3 Site Preparation - 2021

Mitigated Construction Off-Site

| F F GGER                             | ) <sub>(2</sub> . 25. 7 | 1                           | ,       | 7                 | T                      |
|--------------------------------------|-------------------------|-----------------------------|---------|-------------------|------------------------|
| CO2e                                 |                         | 0.0000                      | 0.0000  | 193.1472          | 193.1472               |
| NZO                                  |                         |                             |         |                   |                        |
| CH4                                  | as as                   | 0.0000                      | 0.000.0 | 5.6800e-<br>003   | 5.6800e-<br>003        |
| Total CO2                            | lb/day                  | 0.0000                      | 0.000.0 |                   | 193.0052               |
| NBio-CO2                             |                         | 0.0000                      | 0.000.0 | 193.0052 193.0052 | 193.0052               |
| Bio- CO2 NBio- CO2 Total CO2 CH4 N2O |                         |                             |         |                   |                        |
| PM2.5<br>Total                       |                         | 0.0000                      | 0.0000  | 0.0549            | 0.0549                 |
| Exhaust<br>PM2.5                     |                         | 0.000.0                     | 0.000.0 | 1.5000e-<br>003   | 1.5000e-<br>003        |
| Fugitive<br>PM2.5                    |                         | 0.0000                      | 0.0000  | 0.0534            | 0.0534                 |
| PM10<br>Total                        |                         | 0.000.0                     | 0.000.0 | 0.2028            | 0.2028                 |
| Exhaust<br>PM10                      | lay                     | 0.0000 0.0000 0.0000 0.0000 | 0.0000  | 1.6300e-<br>003   | 1.6300e-<br>003        |
| Fugitive<br>PM10                     | (kep/qi                 | 0.0000                      | 0.0000  | 0.2012            | 0.2012                 |
| S02                                  |                         | 0.000.0                     | 0.000.0 | 1.9400e- (<br>003 | 0.6629 1.9400e-<br>003 |
| ဝ၁                                   |                         | 0.0000                      | 0.0000  | 0.6629            | 0.6629                 |
| NOX CO SO2                           |                         | 0.0000 0.0000 0.0000        | 0.0000  | 0.0587            | 0.0587                 |
| ROG                                  |                         | 0.0000                      | 0.0000  | 0.0858            | 0.0858                 |
|                                      | Category                | Hauling                     | Vendor  | Worker            | Total                  |

3.4 Grading - 2021 Unmitigated Construction On-Site

| Fr 30. ****                            | Tr. autoret en |               | <del>,</del>                      |                        |
|----------------------------------------|----------------|---------------|-----------------------------------|------------------------|
| CO2e                                   |                | 0.0000        | 6,055.613                         | 6,055.613<br>4         |
| N20                                    |                |               |                                   | <u></u>                |
| 1000                                   | <b>A</b>       |               | 1.9428                            | 1.9428                 |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 | Ib/day         | 0.000.0       | 6,007.043 6,007.043 1.9428<br>4 4 | 6,007.043 6,007.043    |
| NBio-CO2                               |                |               | 6,007.043                         | 6,007.043<br>4         |
| Bio-CO2                                |                | -1-1-1-1      | 1<br>1<br>1<br>1<br>1             |                        |
| PM2.5<br>Total                         |                | 3,5965        | 1.8265                            | 5.4230                 |
| Exhaust<br>PM2.5                       |                | 0.0000        | 1.8265                            | 1.8265                 |
| PM10 Fugitive<br>Total PM2.5           |                | 3.5965        |                                   | 3.5965                 |
| PM10<br>Total                          |                | 8.6733        | 1.9853                            | 10.6587                |
| Exhaust<br>PM10                        | lb/day         | 0.0000 8.6733 | 1.9853                            | 1.9853                 |
| Fugitive<br>PM10                       | <b>/Q</b> l    | 8.6733        |                                   | 8.6733                 |
| S02                                    |                |               | 0.0620                            | 0.0620                 |
| 00                                     |                |               | 30.8785                           | 30.8785                |
| NOX                                    |                |               | 4.1912 46.3998 30.8785            | 4.1912 46.3998 30.8785 |
| ROG                                    |                |               | 4.1912                            | 4.1912                 |
|                                        | Category       | Fugitive Dust | Off-Road                          | Total                  |

Date: 1/6/2021 1:49 PM Page 14 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2021
Unmitigated Construction Off-Site

| 1.5.5e 1. E.A.S                 | Tariffor total |                             |               |                             | <del></del>            |
|---------------------------------|----------------|-----------------------------|---------------|-----------------------------|------------------------|
| C02e                            |                | 0.0000                      | 0.0000        | 214.6080                    | 214.6080               |
| NZO                             |                |                             |               |                             |                        |
| CH4                             | ay.            | 0.0000                      | 0.000.0       | 6.3100e-<br>003             | 6.3100e-<br>003        |
| Total CO2                       | lb/day         | 0.0000 0.0000 0.0000        | 0.0000        | 214.4502 6.3100e-<br>003    | 214.4502               |
| NBio-CO2                        |                | 0.000.0                     | 0.0000        | 214.4502                    | 214.4502 214.4502      |
| Bio-CO2 NBio-CO2 Total CO2 CH4  |                |                             |               |                             |                        |
| PM2.5<br>Total                  |                | 0.000.0                     | 0000.0        | 0.0610                      | 0.0610                 |
| Exhaust<br>PM2.5                |                | 0.000.0                     | 0.0000        | 1.6600 <del>e-</del><br>003 | 1.6600e-<br>003        |
| Fugitive Exhaust<br>PM2.5 PM2.5 |                | 0.0000 0.0000 0.0000 0.0000 | 0.0000        | 0.0593                      | 0.0593                 |
| PW10<br>Fotal                   |                | 0.0000                      | 0.0000        | 0.2254                      | 0.2254                 |
| Exhaus<br>PM10                  | iay            | 0.0000                      | 0.0000        | 1.8100e-<br>003             | 1.8100e-<br>003        |
| Fugitive<br>PM10                | lb/day         | 0.000.0                     | 0.000.0       | 0.2236                      | 0.2236                 |
|                                 |                | 0.000.0                     | 0.000.0       | 2.1500e-<br>003             | 2.1500e-<br>003        |
| co soz                          |                | 0.000.0                     | 0.0000 0.0000 | 0.7365 2.1500e-<br>003      | 0.7365 2.1500e-<br>003 |
| ROG NOx                         |                | 0.0000 0.0000 0.0000        | 0.0000        | 0.0652                      | 0.0652                 |
| ROG                             |                | 0.0000                      | 0.0000        | 0.0954                      | 0.0954                 |
|                                 | Category       | Hauling                     | Vendor        | Worker                      | Total                  |

| CO2e                           |          | 0.0000               | 6,055.613                                | 6,055.613<br>4                    |
|--------------------------------|----------|----------------------|------------------------------------------|-----------------------------------|
| NZO                            |          |                      |                                          |                                   |
| CH4                            | a).      |                      | 1.9428                                   | 1.9428                            |
| Total CO2                      | sep/ql.  | 0.0000               | 6,007.043<br>4                           | 6,007.043<br>4                    |
| NBio- CO2                      |          |                      | 0.0000 6,007.043 6,007.043 1.9428<br>4 4 | 0.0000 6,007.043 6,007.043<br>4 4 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          |                      | 0.0000                                   | 0.0000                            |
| PM2.5<br>Total                 |          | 3.5965               | 1.8265                                   | 5.4230                            |
| Exhaust<br>PM2.5               |          | 0.0000               | 1.8265                                   | 1.8265                            |
| ugitive<br>PM2.5               |          |                      | <br> <br> <br> <br>                      | 3.5965                            |
| PM10<br>Total                  |          | 0.0000 8.6733 3.5965 | 1.9853                                   | 10.6587                           |
| Exhaust<br>PM10                | ay.      | 0.0000               | 1.9853                                   | 1.9853                            |
| Fugitive<br>PM10               | lb/day   | 8.6733               |                                          | 8.6733                            |
| S02                            |          |                      | 0.0620                                   | 0.0620                            |
| CO SO2                         |          |                      |                                          | 30.8785                           |
| NOX                            |          |                      | 4.1912 46.3998 30.8785                   | 4.1912 46.3998 30.8785 0.0620     |
| ROG                            |          |                      | 4.1912                                   | 4.1912                            |
|                                | Category | Fugitive Dust        | Off-Road                                 | Total                             |

CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Page 15 of 35

Date: 1/6/2021 1:49 PM

3.4 Grading - 2021

Mitigated Construction Off-Site

| CO2e                           |             | 0.0000                      | 0.0000                     | 214.6080            | 214.6080           |
|--------------------------------|-------------|-----------------------------|----------------------------|---------------------|--------------------|
| N2O                            |             |                             |                            |                     |                    |
| CH4                            | bíday       | 0.0000                      | 0.0000                     | 6.3100e-<br>003     | 6.3100e-<br>003    |
| Total CO2                      | ) <u>q</u>  | 0.0000 0.0000               | 0.0000                     | 214.4502 214.4502   | 214.4502           |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |             | 0.0000                      | 0.0000                     | 214.4502            | 214.4502           |
| Bio-CO2                        |             |                             | ;<br>;<br>;<br>;<br>;<br>; | <br>                |                    |
| PM2.5<br>Total                 |             | 0.000.0                     | 0.0000                     | 0.0610              | 0.0610             |
| Exhaust<br>PM2.5               |             | 0.0000 0.0000 0.0000        | 0.000                      | 1.6600e-<br>003     | 1.6600e-<br>003    |
| Fugitive<br>PM2.5              |             | 0.000.0                     | 0.0000                     | 0.0593              | 0.0593             |
| PM10<br>Total                  |             | 0.000                       | 0.0000                     | 0.2254              | 0.2254             |
| Exhaust<br>PM10                | lb/day      |                             | 0.0000                     | 1.8100e-<br>003     | 1.8100e-<br>003    |
| Fugitive<br>PM:10              | <b>.Ib/</b> | 0.0000                      | 0.0000                     | 0.2236              | 0.2236             |
| S02                            |             | 0.0000                      | 0.0000                     | 2.1500e- 0.2<br>003 | 35 2.1500e-<br>003 |
| 00                             |             | 0.0000                      | 0.0000                     | 0.7365              | 0.73               |
| XON                            |             | 0.0000 0.0000 0.0000 0.0000 | 0.0000                     | 0.0652              | 0.0652             |
| ROG                            |             | 0.0000                      | 0.0000                     | 0.0954              | 0.0954             |
|                                | Category    | Hauling                     | Vendor                     | Worker              | Total              |

3.4 Grading - 2022

| 1917 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                            | Maria de la compansión de |                                           |                                     | <del>,</del> .                  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|---------------------------------|
| C02e                                                                |                                                                                                                | 0.0000                                    | 6,060.015<br>8                      | 6,060.015<br>8                  |
| N2O                                                                 |                                                                                                                |                                           |                                     |                                 |
| CH4                                                                 |                                                                                                                |                                           | 1.9442                              | 1.9442                          |
| otal CO2                                                            | lb/day                                                                                                         | 0.0000                                    | 5,011.410                           | ,011.410<br>5                   |
| IBio-CO2 1                                                          |                                                                                                                |                                           | 6,011,410 6,011,410 1.9442<br>5 5   | 6,011.410 6,011.410 1.9442<br>5 |
| Bio- CO2 N                                                          |                                                                                                                |                                           | ίΨ                                  | •                               |
| PM2.5   Bio. CO2   NBio. CO2   Total CO2   CH4   N2O   CO2e   Total |                                                                                                                | 3.5965                                    | 1,5041                              | 5.1006                          |
| Exhaust<br>PM2.5                                                    |                                                                                                                | 8.6733 0.0000 8.6733 3.5965 0.0000 3.5965 | 1.5041                              | 1.5041                          |
| gitive Exhaust PM10 Fugitive Exhaust PM2.5 PM2.5                    |                                                                                                                | 3.5965                                    | }<br> <br> <br> <br> <br> <br> <br> | 3.5965                          |
| PM10<br>Total                                                       |                                                                                                                | 8.6733                                    | 1.6349                              |                                 |
| Exhaust<br>PM10                                                     | lay                                                                                                            | 0.0000                                    | 1.6349                              | 1.6349 10.3082                  |
| Fugitive<br>PM10                                                    | /lp/day                                                                                                        | 8.6733                                    |                                     | 8.6733                          |
| \$02                                                                |                                                                                                                |                                           | 0.0621                              | 0.0621                          |
| ဝ၁                                                                  |                                                                                                                |                                           | 29.0415                             | 29.0415                         |
| NOX                                                                 |                                                                                                                |                                           | 3.6248 38.8435 29.0415 0.0621       | 3.6248 38.8435 29.0415 0.0621   |
| ROG                                                                 |                                                                                                                |                                           | 3.6248                              | 3.6248                          |
|                                                                     | Category                                                                                                       | Fugitive Dust                             | Off-Road                            | Total                           |

Date: 1/6/2021 1:49 PM Page 16 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2022
Unmitigated Construction Off-Site

|                                 | Frida erac. |                         |               |                   |                   |
|---------------------------------|-------------|-------------------------|---------------|-------------------|-------------------|
| CO2e                            |             | 0.0000                  | 0.0000        | 207.0563          | 207.0563          |
| NZO                             |             |                         |               |                   |                   |
| CH4                             | ay          | 0.000                   | 0.0000        | 5.7000e-<br>003   | 5.7000e-<br>003   |
| Total CO2                       | lb/day      | 0.000.0                 | 0.0000        | 206.9139          | 206.9139 206.9139 |
| NBio-CO2                        |             | 0.000.0                 | 0.000.0       | 206.9139          | 206.9139          |
| Bio-CO2 NBio-CO2 Total CO2 CH4  |             |                         |               |                   |                   |
| t PM2.5<br>Total                |             | 0.0000                  | 0.000.0       | 0.0609            | 0.0609            |
| Fugitive Exhaust<br>PM2.5 PM2.5 |             | 0.000.0 0.000.0 0.000.0 | 0.0000        | 1.6100e-<br>003   | 1.6100e-<br>003   |
| Fugitive<br>PM2.5               |             | 0.000.0                 | 0.000         | 0.0593            | 0.0593            |
| PM10<br>Total                   |             | 0.0000                  | 0.000.0       | 0.2253            | 0.2253            |
| Exhaust<br>PM10                 | lay         | 0.0000                  | 0.0000        | 1.7500e-<br>003   | 1.7500e-<br>003   |
| Fugitive<br>PM10                | lb/day      | 0.0000                  | 0.000.0       | 0.2236            | 0.2236            |
| co sos                          |             | 0.0000                  | 0.000.0       | 4 2.0800e-<br>003 | 2.0800e-<br>003   |
| တ                               |             | 0.0000                  | 0.00          | 0.678             | 0.6784            |
| XON                             |             | 0.0000 0.0000 0.0000    | 0.0000 0.0000 | 0.0589            | 0.0589            |
| ROG                             |             | 0.0000                  | 0.0000        | 0.0896            | 9680'0            |
|                                 | Category    | Hauling                 | Vendor        | Worker            | Total             |

| C02e                                                                    |          | 0.0000               | 6,060.015                                | 6,060.015<br>8                         |
|-------------------------------------------------------------------------|----------|----------------------|------------------------------------------|----------------------------------------|
| N2O CO2e                                                                |          |                      |                                          |                                        |
| CH4                                                                     | lb/day   |                      | 1.9442                                   | 1.9442                                 |
| Total CO2                                                               | p/g]     | 0.0000               | 6,011.410<br>5                           | 6,011.410<br>5                         |
| NBio- CO2                                                               |          |                      | 0.0000 6,011.410 6,011.410 1.9442<br>5 5 | <b>6,011.410</b> 5                     |
| Bio- CO2                                                                |          |                      | 0.0000                                   | 0.0000 6,011,410 6,011,410 1.9442<br>5 |
| Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 PM2.5 PM2.5 Total |          | 3.5965               | 1.5041                                   | 5.1006                                 |
| Exhaust<br>PM2.5                                                        |          | 0.0000               | 1.5041                                   | 1.5041                                 |
| Fugitive<br>PM2.5                                                       |          | 3.5965               |                                          | 1.6349 10.3082 3.5965                  |
| PM10<br>Total                                                           |          | 8.6733               | 1.6349                                   | 10.3082                                |
| Fugitive Exhaust<br>PM10 PM10                                           | Jay      | 8.6733 0.0000 8.6733 | 1.6349                                   | 1.6349                                 |
| Fugitive<br>PM10                                                        | Ib/day   | 8.6733               |                                          | 8.6733                                 |
| S02                                                                     |          |                      | 0.0621                                   | 0.0621                                 |
| NOX CO                                                                  |          |                      | 29.0415                                  | 29.0415                                |
| 1.04° M(1.4)                                                            |          |                      | 3.6248 38.8435 29.0415 0.0621            | 3.6248 38.8435 29.0415 0.0621          |
| ROG                                                                     |          |                      | 3.6248                                   | 3.6248                                 |
|                                                                         | Category | Fugitive Dust        | Off-Road                                 | Total                                  |

Date: 1/6/2021 1:49 PM Page 17 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2022
Mitigated Construction Off-Site

| C02e                         |          | 0.0000               | 0.000.0 | 207.0563            | 207.0563               |
|------------------------------|----------|----------------------|---------|---------------------|------------------------|
| N20                          |          |                      |         |                     |                        |
| CH4                          | âs.      | 0.0000               | 0.0000  | 5.7000e-<br>003     | 5.7000e-<br>003        |
| Total CO2                    | lb/day   | 0.0000               | 0.0000  | 206.9139 - 206.9139 | 206.9139               |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000               | 0.0000  | 206.9139            | 206.9139               |
| Bio-CO2                      |          |                      |         |                     |                        |
| ist PM2.5 E<br>5 Total       |          | 0.0000               | 0.0000  | 0.0609              | 6090'0                 |
| Fugitive Exhaust PM2.5 PM2.5 |          | 0.000.0              | 0.0000  | 1.6100e- (<br>003   | 1.6100e-<br>003        |
| Fugitive<br>PM2.5            |          | 0.0000 0.0000        | 0.0000  | 0.0593              | 0.0593                 |
| st PM10<br>Total             |          | 0.0000               | 0.000   | 0.2253              | 0.2253                 |
| Exhaus<br>PM10               | lb/day   | 0.0000               | 0.0000  | 1.7500e-<br>003     | 1.7500e-<br>003        |
| Fugitive<br>PM10             | )/g[     | 0.0000               | 0.0000  | 0.2236              | 0.2236                 |
| S02                          |          | 0.0000               | 0.0000  | 2.0800e-<br>003     | 0.6784 2.0800e-<br>003 |
| 00                           |          | 0.0000               | 0.0000  | 0.6784              | 0.6784                 |
| NOX                          |          | 0.0000 0.0000 0.0000 | 0.0000  | 0.0589              | 0.0589                 |
| ROG                          |          | 0.0000               | 0.0000  | 0.0896              | 9680'0                 |
|                              | Category | Hauling              | Vendor  | Worker              | Total                  |

3.5 Building Construction - 2022

| 100000000000000000000000000000000000000               |          | _                                 |                                 |
|-------------------------------------------------------|----------|-----------------------------------|---------------------------------|
| COZe                                                  |          | 2,569.632<br>2                    | 2,569.632<br>2                  |
| NZO                                                   |          |                                   |                                 |
| ОНИ                                                   |          | 0.6120                            | 0.6120                          |
| otal CO2                                              | lb/day   | ,554.333<br>6                     | ,554.333<br>6                   |
| Bio-CO2 1                                             |          | 2,554.333 2,554.333 0.6120<br>6 6 | 2,554.333 2,554.333 0.6120<br>6 |
| Bjo- CO2 N                                            |          | · · · · ·                         |                                 |
| Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.7612                            | 0.7612                          |
| Exhaust<br>PM2.5                                      |          | 0.7612                            | 0.7612                          |
| Fugitive<br>PM2.5                                     |          |                                   |                                 |
| PM10<br>Total                                         |          | 0.809.0                           | 0.809.0                         |
| Exhaust<br>PM10                                       | lay      | 0.8090 0.8090                     | 0.8090                          |
| Fugitive<br>PM10                                      | lb/day   |                                   |                                 |
| S02                                                   |          | 0.0269                            | 0.0269                          |
| 8                                                     |          | 16.3634                           | 16.3634                         |
| NOX                                                   |          | 15.6156                           | 15.6156 16.3634 0.0269          |
| ROG                                                   |          | 1.7062 15.6156 16.3634 0.0269     | 1.7062                          |
|                                                       | Category | Off-Road                          | Total                           |

Date: 1/6/2021 1:49 PM Page 18 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2022
Unmitigated Construction Off-Site

|                                  |          |                                           |                            |                          | _                             |
|----------------------------------|----------|-------------------------------------------|----------------------------|--------------------------|-------------------------------|
| C02e                             |          | 0.0000                                    | 3,795.028<br>3             | 8,292.605<br>8           | 12,087.63<br>41               |
| N2O CO2e                         |          |                                           |                            |                          |                               |
| CH4                              | as,      | 0.000                                     | 0.2381                     | 0.2282                   | 0.4663                        |
| Total CO2                        | /ip/qa   | 0.0000                                    | 3,789.075                  | 8,286.901<br>3           | 12,075.97<br>63               |
| NBio- CO2                        |          | 0.000.0                                   | 3,789.075<br>0             | 8,286.901 8,286.901<br>3 | 12,075.97 12,075.97<br>63 63  |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          |                                           | 1<br>1<br>1<br>1<br>1<br>1 |                          |                               |
| PM2.5<br>Total                   |          | 0.0000                                    | 0.2881                     | 2.4390                   | 2.7271                        |
| Exhaus<br>PM2.5                  |          | 0.0000                                    | 0.0245                     | 0.0646                   | 0.0891                        |
| PM10 Fugitive<br>Total PM2.5     |          | 0.0000                                    | 0.2636                     | 2.3745                   | 2.6381                        |
| PM10<br>Total                    |          | 0.0000                                    | 0.9412                     | 9.0234                   | 9,9645                        |
| Exhaust<br>PM10                  | iay      | 0.0000                                    | 0.0256                     | 0.0701                   | 0.0957                        |
| Fugitive Exhaust<br>PM10 PM10    | lb/day   | 0.0000                                    | 0.9155                     | 8.9533                   | 8898'6                        |
| <b>SO</b> 2                      |          | 0.0000                                    | 0.0354                     | 0.0832                   | 0,1186                        |
| 00                               |          | 0.0000                                    | 3.8005                     | 27.1680                  | 30.9685                       |
| ROG NOx CO SO2                   |          | 0.0000                                    | 0.4284 13.1673 3.8005      | 2.3593 27.1680           | 4.0156 15.5266 30.9685 0.1186 |
| ROG                              |          | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.4284                     | 3.5872                   | 4.0156                        |
|                                  | Category | Hauling                                   | Vendor                     | Worker                   | Total                         |

| C02e                                   | 2,569.632<br>2                           | 2,569.632<br>2                    |
|----------------------------------------|------------------------------------------|-----------------------------------|
| N20                                    |                                          |                                   |
| 72 CH4<br>b/day                        | 0.6120                                   | 0.6120                            |
| Total CO2                              | 2,554.333<br>6                           | 2,554.333<br>6                    |
| Bio- CO2   NBio- CO2   Total CO2   CH4 | 0.0000 2,554.333 2,554.333 0.6120<br>6 6 | 0.0000 2,554.333 2,554.333 0.6120 |
| Bio- CO2                               | 0.0000                                   | 0.0000                            |
| PM2.5 B                                | 0.7612 0.7612                            | 0.7612                            |
| Fugitive Exhaust<br>PM2.5 PM2.5        | 0.7612                                   | 0.7612                            |
| Fugitive<br>PM2.5                      |                                          |                                   |
| PM10<br>Total                          | 0608.0                                   | 0.8090                            |
| tive Exhaust<br>110 PM10<br>Ib/day     | 0.8090 0.8090                            | 0.8090                            |
| Fugitive<br>PM10                       |                                          |                                   |
| S02                                    | 0.0269                                   | 0.0269                            |
| 8                                      | 16.3634                                  | 16.3634                           |
| XOX                                    | 1.7062 15.6156 16.3634 0.0269            | 1.7062 15.6156 16.3634 0.0269     |
| ROG                                    | 1.7062                                   | 1.7062                            |
| Category                               | Off-Road                                 | Total                             |

Date: 1/6/2021 1:49 PM Page 19 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2022
Mitigated Construction Off-Site

| Fr 27 (19)                      | 08.88040 | r—                   | ' m                        | '                        | T                            |
|---------------------------------|----------|----------------------|----------------------------|--------------------------|------------------------------|
| CO2e                            |          | 0.0000               | 3,795.028<br>3             | 8,292.605<br>8           | 12,087.63<br>41              |
| .N20                            |          |                      |                            |                          |                              |
| CH4                             | ay       | 0.000                | 0.2381                     | 0.2282                   | 0.4663                       |
| Total CO2                       | lb/day   | 0.0000 0.0000        | 3,789.075 3,789.075<br>0 0 | 8,286.901 8,286.901<br>3 | 12,075.97 12,075.97<br>63 63 |
| NBio-CO2                        |          | 0.000.0              | 3,789.075<br>0             | 8,286.901<br>3           | 12,075.97<br>63              |
| Bio-CO2 NBio-CO2 Total CO2 CH4  |          |                      |                            | 1<br>1<br>1<br>1         |                              |
| PM2.5<br>Total                  |          | 0.0000               | 0.2881                     | 2.4390                   | 2.7271                       |
| Exhaust<br>PM2.5                |          | 0.0000               | 0.0245                     | 0.0646                   | 0.0891                       |
| Fugitive Exhaust<br>PM2:5 PM2.5 |          | 0.000 0.0000 0.0000  | 0.2636                     | 2.3745                   | 2.6381                       |
| PM10<br>Total                   |          | 0.0000               | 0.9412                     | 9.0234                   | 9.9645                       |
| Exhaust<br>PM10                 | lay.     | 0.0000               | 0.0256                     | 0.0701                   | 0.0957                       |
| Fugitive Exhaust<br>PM10 PM10   | lb/day   | 0.0000               | 0.9155                     | 8.9533                   | 9,8688                       |
| SO2                             |          | 0.0000               | 0.0354                     | 0.0832                   | 0.1186                       |
| 00                              |          | 0.000.0              | 3.8005                     | 27.1680                  | 30.9685                      |
| NOX                             |          | 0.0000 0.0000 0.0000 | 0.4284 13.1673 3.8005      | 2.3593 27.1680 0.0832    | 15.5266 30.9685              |
| ROG                             |          | 0.0000               | 0.4284                     | 3.5872                   | 4.0156                       |
|                                 | Category | Hauling              | Vendor                     | Worker                   | Total                        |

# 3.5 Building Construction - 2023

| CO2e                                    |          | 2,570.406<br>1                    | 2,570.406<br>1                  |
|-----------------------------------------|----------|-----------------------------------|---------------------------------|
| NZO                                     |          |                                   |                                 |
| СН4                                     | *        | 0.6079                            | 0.6079                          |
| Fotal CO2                               | lb/day   | 2,555.209<br>9                    | 2,555.209<br>9                  |
| JBio-CO2                                |          | 2,555.209 2,555.209 0.6079<br>9 9 | 2,555.209 2,555.209 0.6079<br>9 |
| Bie-CO2 NBie-CO2 Total CO2 CH4 N2O CO2e |          |                                   |                                 |
| PM2.5<br>Total                          |          | 0.6584                            | 0.6584                          |
| Exhaust<br>PM2.5                        |          | 0.6584                            | 0.6584                          |
| Fugitive Exhaust<br>PM2.5 PM2.5         |          |                                   |                                 |
| PM10<br>Total                           |          | 0.6997                            | 0.6997                          |
| itive Exhaust PM10<br>410 PM10 Total    | ay       | 0.6997                            | 0.6997                          |
| Fugitive<br>PM10                        | lb/day   |                                   |                                 |
| S02                                     |          | 0.0269                            | 0.0269                          |
|                                         |          | 16.2440                           | 16.2440                         |
| ROG NOX CO                              |          | 14.3849                           | 1.5728 14.3849 16.2440 0.0269   |
| ROG                                     |          | 1.5728 14.3849 16.2440 0.0269     | 1.5728                          |
|                                         | Category | Off-Road                          | Total                           |
|                                         | Cal      | ő                                 | -                               |

Date: 1/6/2021 1:49 PM Page 20 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2023

Unmitigated Construction Off-Site

| 10000000                                | Tay a nepari |                      | <del>,</del>               | 1                                    | T.                            |
|-----------------------------------------|--------------|----------------------|----------------------------|--------------------------------------|-------------------------------|
| CO2e                                    |              | 0.0000               | 3,676.641                  | 7,988.868<br>3                       | 11,665.50<br>99               |
| NZO                                     |              |                      |                            |                                      |                               |
| CF4                                     | lay          | 0.000.0              | 0.2096                     | 0.2055                               | 0.4151                        |
| Total CO2                               | lb/day       | 0.0000 0.0000        | 3,671.400 3,671.400 0.2096 | 7,983.731<br>8                       | 11,655.13 11,655.13<br>25 25  |
| Bio-CO2 NBio-CO2 Total CO2              |              | 0.000.0              | 3,671.400<br>7             | 7,983.731<br>8                       | 11,655.13<br>25               |
|                                         |              |                      | <br>                       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                               |
| PM2.5<br>Total                          |              | 0.0000               | 0.2752                     | 2.4372                               | 2.7124                        |
| Exhaust<br>PM2.5                        |              | 0.0000 0.0000 0.0000 | 0.0116                     | 0.0627                               | 0.0743                        |
| Fugitive<br>PM2.5                       |              | 0.0000               | 0.2636                     | 2.3745                               | 2.6381                        |
| PM10<br>Total                           |              | 0.0000               | 0.9277                     | 9.0214                               | 9.9491                        |
| Exhaust<br>PM10                         | lb/day       | 0.0000               | 0.0122                     | 0.0681                               | £080°0                        |
| Fugitive<br>PM10                        | /ql          | 0.0000               | 0.9156                     | 8.9533                               | 8898'6                        |
| 100000000000000000000000000000000000000 |              | 0.0000               | 0.0343                     | 0.0801                               | 0.1144                        |
| 8                                       |              | 0.0000               | 3.3771                     | 24.9725                              | 28.3496                       |
| NOx CO SO2                              |              | 0.0000 0.0000 0.0000 | 9.9726                     | 3.3795 2.1338 24.9725                | 3.6978 12.1065 28.3496 0.1144 |
| ROG                                     |              | 0.0000               | 0.3183                     | 3.3795                               | 3.6978                        |
|                                         | Category     | Hauling              | Vendor                     | Worker                               | Total                         |

| C02e                                                 |          | 2,570.406<br>1                    | 2,570.406<br>1                    |
|------------------------------------------------------|----------|-----------------------------------|-----------------------------------|
| N2O                                                  |          |                                   |                                   |
| CH4                                                  | lb/day.  | 0.6079                            | 0.6079                            |
| Total CO2                                            | )/ql     | 2,555.209<br>9                    | 2,555.209<br>9                    |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e              |          | 0.0000 2,555.209 2,555.209 0.6079 | 0.0000 2,555.209 2,555.209 0.6079 |
| Bio-CO2                                              |          | L                                 | 0.0000                            |
| r PM2.5<br>Total                                     |          | 0.6584                            | 0.6584                            |
| Exhaust<br>PM2.5                                     |          | 0.6584                            | 0.6584                            |
| Fugitive<br>PM2.5                                    |          |                                   |                                   |
| PM10<br>Total                                        |          | 0.6997                            | 7669.0                            |
| Exhaust PM10 Fügitive Exhaust PM10 Total PM2.5 PM2.5 | lb/day   | 0.6997                            | 0.6997                            |
| Fugitive<br>PM10                                     | //qı     |                                   |                                   |
| S02                                                  |          | 0.0269                            | 0.0269                            |
| တ                                                    |          | 16.2440                           | 16.2440                           |
| ROG NOx                                              |          | 14.3849                           | 1.5728 14,3849 16,2440            |
| ROG                                                  |          | 1.5728 14.3849 16.2440 0.0269     | 1.5728                            |
|                                                      | Category | Off-Road                          | Total                             |
|                                                      | Ö        | ф                                 |                                   |

Page 21 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/6/2021 1:49 PM

3.5 Building Construction - 2023
Mitigated Construction Off-Site

|                                 |          | _                           |                                 |                            |                              |
|---------------------------------|----------|-----------------------------|---------------------------------|----------------------------|------------------------------|
| CO2e                            |          | 0.0000                      | 3,676.641<br>7                  | 7,988.868                  | 11,665.50<br>99              |
| N2O                             |          |                             |                                 | <br>                       |                              |
| CH4                             | à        | 0.0000                      | 0.2096                          | 0.2055                     | 0.4151                       |
| Total CO2                       | lb/day   | 0.0000                      | 3,671.400<br>7                  | 7,983.731<br>8             | 11,655.13 11,655.13<br>25 25 |
| NBio-CO2                        |          | 0.0000                      | 3,671,400 3,671,400 0.2096<br>7 | 7,983.731 7,983.731<br>8 8 | 11,655.13<br>25              |
| Bio- CO2 NBio- CO2 Total CO2    |          |                             |                                 |                            |                              |
| PM2.5<br>Total                  |          | 0.0000                      | 0.2752                          | 2.4372                     | 2.7124                       |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.0000 0.0000               | 0.0116                          | 0.0627                     | 0.0743                       |
| Fugitive<br>PW2.5               |          | 0.0000                      | 0.2636                          | 2.3745                     | 2.6381                       |
| PM10<br>Total                   |          | 0.0000                      | 0.9277                          | 9.0214                     | 9.9491                       |
| Exhaust<br>PM10                 | lay      | 0.0000 0.0000               | 0.0122                          | 0.0681                     | 0.0803                       |
| Fugitive<br>PM10                | lb/day   | 0.000.0                     | 0.9156                          | 8.9533                     | 9.8688                       |
| S02                             |          | 0.0000                      | 0.0343                          | 0.0801                     | 0.1144                       |
| co soz                          |          | 0.0000                      | 3.3771                          | 24.9725                    | 28.3496                      |
| ×on                             |          | 0.0000 0.0000 0.0000 0.0000 | 9.9726                          | 2.1338                     | 3.6978 12.1065 28.3496       |
| ROG                             |          | 0.0000                      | 0.3183                          | 3.3795                     | 3.6978                       |
|                                 | Category | Hauling                     | Vendor                          | Worker                     | Total                        |

3.6 Paving - 2023
Unmitigated Construction On-Site

|                                                               | No ver   |                                 |                               | ,                      |
|---------------------------------------------------------------|----------|---------------------------------|-------------------------------|------------------------|
| COZe                                                          |          | 2,225.433                       | 0.0000                        | 2,225.433<br>6         |
| N20                                                           |          |                                 |                               |                        |
|                                                               | Хe       | 0.7140                          |                               | 0.7140                 |
| Total CO2                                                     | lb/day   | 2,207.584                       | 0.0000                        | 2,207.584              |
| NBio-CO2                                                      |          | 2,207.584 2,207.584 0.7140<br>1 | · • ·                         | 2,207.584 2,207.584    |
| Bio-CO2 NBio-CO2 Total CO2 CH4                                |          |                                 |                               |                        |
| PM2.5<br>Total                                                |          | 0.4694                          | 0.0000                        | 0.4694                 |
| Exhaust<br>PM2.5                                              |          | 0.4694                          | 0.0000                        | 0.4694                 |
| Fugitive<br>PM2.5                                             |          |                                 | <br> <br> <br> <br> <br> <br> |                        |
| PM10<br>Total                                                 |          | 0.5102                          | 0.0000                        | 0.5102                 |
| Fugitive Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 | ay       | 0.5102                          | 0.0000                        | 0.5102                 |
| Fugitive<br>PM10                                              | lb/day   |                                 | <br>!<br>!<br>!               |                        |
| S02                                                           |          | 0.0228                          |                               | 0.0228                 |
| 8                                                             |          | 14.5842                         |                               | 14.5842                |
| ROG NOx CO SO2                                                |          | 1.0327 10.1917 14.5842 0.0228   |                               | 1.0327 10.1917 14.5842 |
| ROG                                                           |          | 1.0327                          | 0.0000                        | 1.0327                 |
|                                                               | Category | Off-Road                        | Paving                        | Total                  |
|                                                               | ర్       | ō                               | <u>a</u>                      | _                      |

CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Page 22 of 35

Date: 1/6/2021 1:49 PM

3.6 Paving - 2023
Unmitigated Construction Off-Site

| (                          | 100000000000000000000000000000000000000 |                             |         |                                             |                        |
|----------------------------|-----------------------------------------|-----------------------------|---------|---------------------------------------------|------------------------|
| C02e                       |                                         | 0.0000                      | 0.0000  | 149.6043                                    | 149.6043               |
| N2O                        |                                         |                             |         |                                             |                        |
| CH4                        | [b/day]                                 | 0.0000                      | 0.0000  | 3.8500e-<br>003                             | 3,8500e-<br>003        |
| Total CO2                  | )qI                                     | 0.0000 0.0000 0.0000        | 0.0000  | 149.5081                                    | 149.5081 149.5081      |
| Bio-CO2 NBio-CO2 Total CO2 |                                         | 0.0000                      | 0.0000  | 149.5081                                    | 149.5081               |
| Bio-CO2                    |                                         |                             | :       |                                             |                        |
| t PM2.5 E                  |                                         | 0.0000                      | 0.0000  | 0.0456                                      | 0.0456                 |
| Exhaust<br>PM2.5           |                                         | 0.0000                      | 0.0000  | 1.1700e-<br>003                             | 1.1700e-<br>003        |
| Fugitive<br>PM2.5          |                                         | 0.000.0                     | 0.0000  | 0.0445                                      | 0.0445                 |
| PM10<br>Total              |                                         | 0.000.0                     | 0.0000  | 0.1689                                      | 0.1689                 |
| Exhaust<br>PM10            | lb/day                                  | 0.000.0                     | 0.000.0 | 1.2800e-<br>003                             | 1.2800e- 0<br>003      |
| Fugitive<br>PM10           | )/gl                                    | 0.0000                      | 0.000.0 | 0.1677                                      | 0.1677                 |
| S02                        |                                         | 0.0000                      | 0.0000  | 1.5000e-<br>003                             | 0.0400 0.4677 1.5000e- |
| NO <sub>X</sub> CO         |                                         | 0.0000                      | 0.0000  | 0.4677                                      | 0.4677                 |
| XON                        |                                         | 0.0000                      | 0.0000  | 0.0633 0.0400 0.4677 1.5000e- 0.1677<br>003 |                        |
| ROG                        |                                         | 0.0000 0.0000 0.0000 0.0000 | 0.0000  | 0.0633                                      | 0.0633                 |
|                            | Category                                | Hauling                     | Vendor  | Worker                                      | Total                  |

| CO2e                                       |             | 2,225.433<br>6                    | 0.0000                          | 2,225.433<br>6                |
|--------------------------------------------|-------------|-----------------------------------|---------------------------------|-------------------------------|
| NZO                                        |             |                                   |                                 |                               |
| CH4                                        | b/day       | 0.7140                            |                                 | 0.7140                        |
| Total CO2                                  | <u>//GI</u> | 2,207.584                         | 0.0000                          | 2,207.584<br>1                |
| NBio- CO2                                  |             | 0.0000 2,207.584 2,207.584 0.7140 | i<br>!<br>!                     | 0.0000 2,207.584 2,207.584    |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 Total |             | 0.0000                            | :<br>:<br>:<br>:<br>:<br>:<br>: | 0.000                         |
|                                            |             | 0.4694 0.4694                     | 0.0000                          | 0.4694                        |
| Fugitive Exhaust<br>PM2.5 PM2.5            |             | 0.4694                            | 0.000.0                         | 0.4694                        |
| Fugitive<br>PM2.5                          |             |                                   |                                 |                               |
| PM10<br>Total                              |             | 0.5102                            | 0.0000                          | 0.5102                        |
| Exhaust<br>PM10                            | lb/ɗay      | 0.5102                            | 0.0000                          | 0.5102                        |
| Fugitive<br>PM10                           | lb/         |                                   |                                 |                               |
| S02                                        |             | 0.0228                            |                                 | 0.0228                        |
| NOX                                        |             | 14.5842                           |                                 | 14.5842                       |
|                                            |             | 1.0327 10.1917 14.5842 0.0228     |                                 | 1.0327 10.1917 14.5842 0.0228 |
| ROG                                        |             | 1.0327                            | 0.0000                          | 1.0327                        |
|                                            | Category    | Off-Road                          | Paving                          | Total                         |

Page 23 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/6/2021 1:49 PM

3.6 Paving - 2023

Mitigated Construction Off-Site

| CO2e                             |          | 0.0000                      | 0.0000                | 149.6043                   | 149.6043               |
|----------------------------------|----------|-----------------------------|-----------------------|----------------------------|------------------------|
| NZO                              |          |                             |                       |                            |                        |
| CH4                              | p/day    | 0.0000                      | 0.0000                | 3.8500e-<br>003            | 3.8500e-<br>003        |
| Total CO2                        | yq)      | 0.000                       | 0.0000                | 149.5081                   | 149.5081               |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.000.0                     | 0.0000                | 149.5081                   | 149.5081               |
| Bio-CO2                          |          |                             | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1<br>1 |                        |
| t PM2.5<br>Total                 |          | 0.0000                      | 0.0000                | 0.0456                     | 0.0456                 |
| Exhaust<br>PM2.5                 |          |                             | 0.0000                | 1.1700e-<br>003            | 1.1700e-<br>003        |
| Fugitive<br>PM2.5                |          | 0.0000 0.0000 0.0000 0.0000 | 0.000                 | 0.0445                     | 0.0445                 |
| PM10<br>Total                    |          | 0.0000                      | 0.000.0               | 0.1689                     | 0.1689                 |
| Exhaust<br>PM10                  | lb/day   | 0.0000                      | 0.000.0               | 1.2800e-<br>003            | 1.2800e-<br>003        |
| Fugitive<br>PM10                 | /IP/     | 0.0000                      | 0.0000                | 0.1677                     | 0.1677                 |
| co soz                           |          | 0.0000                      | 0.0000                | 1.5000e- (<br>003          | 1.5000e-<br>003        |
| တ                                |          | 0.0000                      | 0.0000                | 0.4677                     | 0.4677                 |
| XON                              |          | 0.000 0.0000 0.0000         | 0.0000 0.0000         | 0.0400                     | 0.0400 0.4677 1.5000e- |
| ROG                              |          | 0.0000                      | 0.0000                | 0.0633                     | 0.0633                 |
|                                  | Category | Hauling                     | Vendor                | Worker                     | Totai                  |

3.6 Paving - 2024

|                                            |             | æ                                   | :_      | g                            |
|--------------------------------------------|-------------|-------------------------------------|---------|------------------------------|
| CO2e                                       |             | 2,225.396<br>3                      | 0.0000  | 2,225.396<br>3               |
| NZO                                        |             |                                     |         |                              |
| of Charles a Sec.                          | ) Ae        | 0.7140                              |         | 0.7140                       |
| Total CO2                                  | kep/qi      | 2,207.547<br>2                      | 0.0000  | 2,207.547<br>2               |
| Bio-CO2 NBio-CO2 Total CO2 CH4             |             | 2,207.547 2,207.547 0.7140<br>2 2 2 |         | 2,207.547 2,207.547<br>2 2   |
| Bio- CO2                                   |             |                                     |         |                              |
| PM2.5<br>Total                             |             | 0.4310                              | 0.0000  | 0.4310                       |
| PM10 Fügitive Exhaust<br>Total PM2.5 PM2.5 |             | 0.4310                              | 0.0000  | 0.4310 0.4310                |
| Fügitive<br>PM2.5                          |             |                                     |         |                              |
| PM10<br>Total                              |             | 0.4685                              | 0.000.0 | 0.4685                       |
| Exhaust<br>PM10                            | lb/day      | 0.4685 0.4685                       | 0.000.0 | 0.4685                       |
| SO2 Fugitive Exhaust<br>PM10 PM10          | <i>y</i> gi |                                     |         |                              |
| S02                                        |             | 0.0228                              |         | 0.0228                       |
| 8                                          |             | 14.6258                             |         | 14.6258                      |
| ROG NOX CO                                 |             | 0.9882 9.5246 14.6258 0.0228        |         | 0.9882 9.5246 14.6258 0.0228 |
| ROG                                        |             | 0.9882                              | 0.0000  | 0.9882                       |
|                                            | Category    | Off-Road                            | Paving  | Total                        |

Date: 1/6/2021 1:49 PM Page 24 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2024
Unmitigated Construction Off-Site

| F 7 KOUST                                    | Harita da | 1                                  |              |                                             | _                             |
|----------------------------------------------|-----------|------------------------------------|--------------|---------------------------------------------|-------------------------------|
| CO2e                                         |           | 0.0000                             | 0.0000       | 144.9587                                    | 144.9587                      |
| NZO                                          |           |                                    |              |                                             |                               |
| Ç <del>.</del>                               | lb/day    | 0.0000                             | 0.0000       | 3.5300e-<br>003                             | 3.5300e-<br>003               |
| Total CO2                                    | )qq       | 0.0000 0.00000 0.00000             | 0.0000       | 144.8706 144.8706                           | 144.8706 144.8706 3.5300e-    |
| NBio-CO2                                     |           | 0.0000                             | 0.0000       | 144.8706                                    | 144.8706                      |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total |           |                                    |              |                                             |                               |
| PM2.5<br>Total                               |           | 0.000                              | 0.0000       | 0.0456                                      | 0.0456                        |
| Exhaust<br>PM2.5                             |           | 0.0000 0.0000                      | 0.0000       | 1.1600 <del>e</del> -<br>003                | 1.1600e-<br>003               |
| Fugitive<br>PM2.5                            |           | 0.0000                             | 0.0000       | 0.0445                                      | 0.0445                        |
| PM10<br>Total                                |           | 0.0000                             | 0.0000       | 0.1689                                      | 0.1689                        |
| Exhaust<br>PM10                              | day       | 0.0000                             | 0.000        | 1.2600e-<br>003                             | 1.2600e-<br>003               |
| Fugitive<br>PM10                             | lb/day    | 0.0000                             | 0.0000       | 0.1677                                      | 0.1677                        |
| 20S                                          |           | 0.0000                             | 0.0000       | 1.4500e-<br>003                             | 1.4500e-<br>003               |
| NOx CO SOZ                                   |           | 0.0000                             | 0.0000       | 0.4354                                      | 0.4354                        |
|                                              |           | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.000 0.0000 | 0.0601 0.0364 0.4354 1.4500e- 0.1677<br>003 | 0.0601 0.0364 0.4354 1.4500e- |
| ROG                                          |           | 0.0000                             | 0.0000       | 0.0601                                      | 0.0601                        |
|                                              | Category  | Hauling                            | Vendor       | Worker                                      | Total                         |

| CO2e                                                  |          | 2,225.396<br>3                    | 0.0000 | 2,225.396<br>3                           |
|-------------------------------------------------------|----------|-----------------------------------|--------|------------------------------------------|
| N2O                                                   |          |                                   |        |                                          |
| CF44                                                  | lb/day   | 0.7140                            |        | 0.7140                                   |
| Total CO2                                             | //ql     | 2,20 <b>7</b> .547<br>2           | 0.0000 | 2,207.547<br>2                           |
| NBio-CO2                                              |          | 0.0000 2,207.547 2,207.547 0.7140 |        | 2,207.547<br>2                           |
| Bio-CO2                                               |          | 0.0000                            | <br>   | 0.0000                                   |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e Total |          | 0.4310                            | 0.0000 | 0.4310 0.0000 2,207.547 2,207.547 0.7140 |
| Exhaust<br>PM2.5                                      |          | 0.4310                            | 0.0000 | 0.4310                                   |
| Fugitive<br>PM2.5                                     |          |                                   |        |                                          |
| PM10<br>Total                                         |          | 0.4685                            | 0.0000 | 0.4685                                   |
| Exhaust<br>PM10                                       | day      | 0.4685 0.4685                     | 0.0000 | 0.4685                                   |
| Fugitive<br>PM10                                      | lb/day.  |                                   |        |                                          |
| S02                                                   |          | 0.0228                            |        | 0.0228                                   |
| 00                                                    |          | 14.6258                           |        | 14.6258                                  |
| NOX                                                   |          | 9.5246                            |        | 9.5246 14.6258                           |
| ROG                                                   |          | 0.9882 9.5246 14.6258 0.0228      | 0.0000 | 0.9882                                   |
|                                                       | Category | Off-Road                          | Paving | Total                                    |

Date: 1/6/2021 1:49 PM Page 25 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2024
Mitigated Construction Off-Site

| C02e                                 |          | 0.0000                      | 0.0000        | 144.9587               | 144,9587                                            |
|--------------------------------------|----------|-----------------------------|---------------|------------------------|-----------------------------------------------------|
| N2O                                  |          |                             |               |                        |                                                     |
| CH4                                  | jay      | 0.0000                      | 0.0000        | 3.5300e-<br>003        | 3.5300e-<br>003                                     |
| Total CO2                            | lb/day   | 0.0000                      | 0.0000        | 144.8706               | 144.8706                                            |
| NBio-CO2                             |          | 0.000.0                     | 0.0000        | 144.8706 144.8706      | 144.8706                                            |
| Bio- CO2 NBio- CO2 Total CO2 CH4 N2O |          |                             |               | ,                      |                                                     |
| PM2.5<br>Total                       |          | 0.0000                      | 0.0000        | 0.0456                 | 0.0456                                              |
| Exhaust<br>PM2.5                     |          | 0.0000                      | 0.0000        | 1.1600e-<br>003        | 1.1600e-<br>003                                     |
| Fugitive Exhaust<br>PM2.5 PM2.5      |          | 0.0000 0.0000 0.0000        | 0.0000        | 0.0445                 | 0.0445                                              |
| PM10<br>Total                        |          | 0.000.0                     | 0.000.0       | 0.1689                 | 0.1689                                              |
| Fugitive Exhaust PM10 PM10           | lb/day   | 0.0000                      | 0.0000        | 1.2600e-<br>003        | 7 1.2600e-<br>003                                   |
| Fugitive<br>PM10                     | /qı      | 0.0000                      | 0.0000        | 0.167                  | 0.167                                               |
| S02                                  |          | 0.0000                      | 0.0000        | 0.4354 1.4500e-<br>003 | 1,4500e-<br>003                                     |
| တ                                    |          | 0.0000                      | 0.0000 0.0000 | 0.4354                 | 0.4354                                              |
| ROG NOx CO SO2                       |          | 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 0.0364                 | 0.0601 0.0364 0.4354 1.4500e-<br>0.0364 0.0354 0.03 |
| ROG                                  |          | 0.0000                      | 0.0000        | 0.0601                 | 0.0601                                              |
|                                      | Category | Hauling                     | Vendor        | Worker                 | Total                                               |

3.7 Architectural Coating - 2024

| .2e                           |          | 000                      | 3443                     | 3443                                   |
|-------------------------------|----------|--------------------------|--------------------------|----------------------------------------|
| CO2e                          |          | 0.0000                   | 281.8443                 | 281.8443                               |
| NZO                           |          |                          | <u> </u>                 |                                        |
| CH4                           | lb/day   |                          | 0.0159                   | 0.0159                                 |
| Total CO2                     | ygı .    | 0.0000                   | 281.4481                 | 281.4481 281.4481                      |
| NBio-CO2                      |          |                          | 281.4481 281.4481 0.0159 | 281.4481                               |
| BIO-CO2 NBIO-CO2 TOTALCO2 CH4 |          |                          |                          |                                        |
| PM2.5<br>Total                |          | 0.000.0                  | 0.0609                   | 0.0609                                 |
| Exhaust<br>PM2.5              |          | 0.0000                   | 0.0609                   | 0.0609                                 |
| PM10 Fugitive<br>Total PM2:5  |          |                          |                          |                                        |
| PM10<br>Total                 |          | 0.000.0                  | 0.0609                   | 6090.0                                 |
| Exhaust<br>PM10               | ay       | 0.000.0                  | 0.0609                   | 0.0609                                 |
| Fugitive<br>PM10              | lb/day.  |                          |                          |                                        |
| <b>S</b> 02                   |          |                          | 1.8101 2.9700e-<br>003   | 2.9700e-<br>003                        |
| <u>0</u>                      |          |                          | 1.8101                   | 1.8101                                 |
| ROG NOX                       |          |                          | 1.2188                   | 236.5923 1.2188 1.8101 2.9700e-<br>003 |
| ROG                           |          | 236.4115                 | 0.1808                   | 236.5923                               |
|                               | Category | Archit. Coating 236.4115 | Off-Road                 | Total                                  |

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Page 26 of 35

3.7 Architectural Coating - 2024
Unmitigated Construction Off-Site

| and the same                    | The endoeses |                                    |         |                            |                            |
|---------------------------------|--------------|------------------------------------|---------|----------------------------|----------------------------|
| C02e                            |              | 0.0000                             | 0.0000  | 1,546.226                  | 1,546.226<br>2             |
| NZO                             |              |                                    |         |                            |                            |
| CH4                             | Å            | 0.000.0                            | 0.000.0 | 0.0376                     | 0.0376                     |
| Total CO2                       | lb/day       | 0.0000                             | 0.000.0 | 1,545.286                  | 1,545.286                  |
| NBio-CO2                        |              | 0.0000                             | 0.0000  | 1,545.286 1,545.286<br>0 0 | 1,545.286 1,545.286<br>0 0 |
| Bio-CO2 NBio-CO2 Total CO2 CH4  |              |                                    |         |                            |                            |
| PM2.5<br>Total                  |              | 0.0000                             | 0.000.0 | 0.4866                     | 0.4866                     |
| Exhaust<br>PM2.5                |              | 0.000.0                            | 0.000.0 | 0.0123                     | 0.0123                     |
| Fugitive Exhaust<br>PM2.5 PM2.5 |              | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000  | 0.4743                     | 0.4743                     |
| PM10<br>Total                   |              | 0.0000                             | 0.0000  | 1.8018                     | 1.8018                     |
| Exhaust<br>PM10                 | lb/day       | 0.0000                             | 0.000   | 0.0134                     | 0.0134                     |
| Fugitive<br>PM10                | )/qi         | 0.0000                             | 0.0000  | 1.7884                     | 1.7884                     |
| S02                             |              | 0.0000                             | 0.0000  | 0.0155                     | 0.0155                     |
| 00                              |              | 0.0000                             | 0.0000  | 4.6439                     | 4.6439                     |
| NOX                             |              | 0.0000 0.0000 0.0000               | 0.0000  | 0.3886                     | 0.3886                     |
| ROG                             |              | 0.0000                             | 0.0000  | 0.6406                     | 0.6406                     |
|                                 | Category     | Hauling                            | Vendor  | Worker                     | Total                      |

| N20 C02e                        |          | 0.0000                   | 281.8443                 | 281.8443                        |
|---------------------------------|----------|--------------------------|--------------------------|---------------------------------|
| AHO<br>N                        | Á        |                          | 0.0159                   | 0.0159                          |
| Bio-CO2 NBio-CO2 Total CO2      | (b/day   | 0.0000                   | 0.0000 281.4481 281.4481 | 0.0000 281.4481 281.4481        |
| NBio-CO2                        |          |                          | 281.4481                 | 281.4481                        |
| Bio-CO2                         |          | ) of of of               | 0.0000                   | 0.0000                          |
| t PM2.5<br>5 Total              |          | 0.0000                   | 0.0609                   | 0.0609                          |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.0000                   | 0.0609                   | 0.0609                          |
| Fugitive<br>PM2.5               |          |                          | <br> <br> <br> <br>      |                                 |
| PM10<br>Total                   |          | 0.0000 0.0000            | 0.0609                   | 0.0609                          |
| Exhaust<br>PM10                 | lb/day   | 0.0000                   | 0.0609                   | 0.0609                          |
| Fugitive<br>PM10                | g)       |                          |                          |                                 |
| <b>S</b> 02                     |          |                          | 2.9700e-<br>003          | 2.9700e-<br>003                 |
| 00                              |          |                          | 1.8101                   | 1.8101                          |
| XON.                            |          |                          | 1.2188 1.8101 2.9700e-   | 236.5923 1.2188 1.8101 2.9700e- |
| ROG                             |          | 236.4115                 | 0.1808                   | 236.5923                        |
|                                 | Category | Archit. Coating 236.4115 | Off-Road                 | Total                           |

CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/6/2021 1:49 PM

3.7 Architectural Coating - 2024
Mitigated Construction Off-Site

| C02e                         |          | 0.0000               | 0.0000  | 1,546.226<br>2    | 1,546.226<br>2             |
|------------------------------|----------|----------------------|---------|-------------------|----------------------------|
| N2O                          |          |                      |         |                   |                            |
| CH4                          | asy      | 0.0000               | 0.0000  | 0.0376            | 0.0376                     |
| Total CO2                    | lb/day.  | 0.0000               | 0.0000  | 1,545.286         | 1,545.286<br>0             |
| NBio-CO2                     |          | 0.000.0              | 0.0000  | 1,545.286 1,<br>0 | 1,545.286 1,545.286<br>0 0 |
| Bio- CO2 NBio- CO2 Total CO2 |          |                      |         |                   |                            |
| PM2.5<br>Total               |          | 0.0000               | 0.0000  | 0.4866            | 0,4866                     |
| Exhaust<br>PM2.5             |          | 0.000.0              | 0.0000  | 0.0123            | 0.0123                     |
| Fugitive<br>PM2.5            |          | 0.0000               | 0.000.0 | 0.4743            | 0.4743                     |
| PM10<br>Total                |          | 0.0000               | 0.0000  | 1.8018            | 1.8018                     |
| Exhaust<br>PM10              | lay      | 0000 0.0000          | 0.000.0 | 0.0134            | 0.0134                     |
| Fugitive<br>PM10             | lb/day   | 0.0000               | 0.000.0 | 1.7884            | 1.7884                     |
| \$05                         |          | 0.0000               | 0.0000  | 0.0155            | 0.0155                     |
| တ                            |          | 0.0000               | 0.0000  | 4.6439            | 4.6439                     |
| OO XON                       |          | 0.0000 0.0000 0.0000 | 0.0000  | 0.3886            | 0.3886                     |
| Roe                          |          | 0.0000               | 0.0000  | 0.6406            | 0.6406                     |
|                              | Category | Hauling              | Vendor  | Worker            | Total                      |

# 4.0 Operational Detail - Mobile

# 4.1 Mitigation Measures Mobile

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| C02e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47,972.68<br>39                             | 47,972.68<br>39                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|
| N2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47                                          | 47                                    |
| CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1953                                      | 2.1953                                |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47,917.80 47,917.80 2.1953<br>05 05         | 47,917.80 47,917.80 2.1953<br>05 05   |
| NBio- CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47,917.80 4<br>05                           | 47,917.80 4<br>05                     |
| Bio-CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                       |
| PM2.5<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.6083                                     | 12.6083                               |
| Jugitive Exhaust PM10 Fugitive Exhaust PM10 PM2.5 PM2. | .9592 0.3373 46.2965 12.2950 0.3132 12.6083 | 0.3373 46.2965 12.2950 0.3132 12.6083 |
| Fugitive<br>PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.2950                                     | 12.2950                               |
| PM10<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.2965                                     | 46.2965                               |
| Exhaust<br>PM10<br>b/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3373                                      | 0.3373                                |
| Fugitive<br>PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.9592                                     | 45.9592                               |
| S02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4681                                      | 0.4681                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.0422                                    | 110.0422                              |
| ROG NOX CO SO2 Fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.5233 45.9914 110.0422 0.4681 45           | 9.5233 45.9914 110.0422 0.4681 45.    |
| ROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.5233                                      | 9.5233                                |
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mitigated                                   | Unmitigated                           |

## 4.2 Trip Summary Information

|                                     | Avera    | Average Daily Trip Rate | ate      | Unmitigated | Mitigated  |
|-------------------------------------|----------|-------------------------|----------|-------------|------------|
| Land Use                            | Weekday  | Saturday                | Sunday   | Annual VMT  | Annual VMT |
| Apartments Low Rise                 | 145.75   | 154.25                  | 154.00   | 506,227     | 506,227    |
| Apartments Mid Rise                 | 4,026.75 | 3,773.25                | 4075.50  | 13,660,065  | 13,660,065 |
| General Office Building             | 288.45   | 62.55                   | 31.05    | 706,812     | 706,812    |
| High Turnover (Sit Down Restaurant) | 2,368.80 | 2,873.52                | 2817.72  | 3,413,937   | 3,413,937  |
| Hotel                               | 192.00   | 187.50                  | 160.00   | 445,703     | 445,703    |
| Quality Restaurant                  | 501.12   | 511.92                  | 461.20   | 707,488     | 707,488    |
| Regional Shopping Center            | 528.08   | 601.44                  | 357.84   | 1,112,221   | 1,112,221  |
| Total                               | 8,050.95 | 8,164.43                | 8,057.31 | 20,552,452  | 20,552,452 |
|                                     |          |                         |          |             |            |

### 4.3 Trip Type Information

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/6/2021 1:49 PM

|                | 395                               | Γ                   | :                   | :                       | :                       | <u>.                                    </u> |       | ;                        |
|----------------|-----------------------------------|---------------------|---------------------|-------------------------|-------------------------|----------------------------------------------|-------|--------------------------|
| % e            | Pass-by                           | 3                   | 3                   | 4                       | 43                      | 4                                            | 44    | 11                       |
| Trip Purpose % | Diverted                          | =                   | <del>-</del>        | 19                      | 20                      | 38                                           | 8     | 35                       |
|                | Primary                           | 98                  | 98                  | 77                      | 37                      | 28                                           | 38    | 54                       |
|                | H-W or C-W H-S or C-C H-O or C-NW | 40.60               | 40.60               | 19.00                   | 19.00                   | 19.00                                        | 19.00 | 19.00                    |
| Trip %         | H-S or C-C                        | 19.20               | 19.20               | 48.00                   | 72.50                   | 61.60                                        | 69.00 | 64.70                    |
|                |                                   | 40.20               | 40.20               | 33.00                   | 8.50                    | 19.40                                        | 12.00 | 16.30                    |
|                | H-W or C-W H-S or C-C H-O or C-NW | 8.70                | 8.70                | 6.90                    | 6.90                    | 6.90                                         | 6.90  | 6.90                     |
| Miles          | J-⊃ or S-H                        | 5.90                | 5.90                | 8.40                    | 8.40                    | 8.40                                         | 8.40  | 8.40                     |
|                | H-W or C-W                        | 14.70               | 14.70               | 16.60                   | 16.60                   | 16.60                                        | 16.60 | 16.60                    |
|                | Land Use                          | Apartments Low Rise | Apartments Mid Rise | General Office Building | High Turnover (Sit Down | Hotel                                        |       | Regional Shopping Center |

#### 4.4 Fleet Mix

| Land Use                               | LDA               | LDT1                       | LDT2     | MDV      | LHD1     | . LHD2   | LDA LDT1 LDT2 MDV LHD1 LHD2 MHD OBUS UBUS WCY SBUS                                                                   | ОНН      | SOBO     | SNBO                      | MCY      | SBOS     | MH       |
|----------------------------------------|-------------------|----------------------------|----------|----------|----------|----------|----------------------------------------------------------------------------------------------------------------------|----------|----------|---------------------------|----------|----------|----------|
| Apartments Low Rise                    | 0.543088 0.044216 | 0.044216                   | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.543088 0.04216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821  | 0.033577 | 0.002613 | 0.001817                  | 0.005285 | 0.000712 | 0.000821 |
| Apartments Mid Rise                    | 0.543088          | 0.543088 0.044216 0.209971 | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821                            | 0.033577 | 0.002613 | 0.001817                  | 0.005285 | 0.000712 | 0.000821 |
| General Office Building                | 0.543088          | 0.543088 0.044216 0.2      | 0.209971 | 0.116369 | 0.014033 | 0.006332 |                                                                                                                      | 0.033577 | 0.002613 | 0.001817                  | 0.005285 | 0.000712 | 0.000821 |
| High Turnover (Sit Down<br>Restaurant) | 0.543088 0.0      | 0.044216                   | 0.209971 | 0.116369 | 09971    | 0.006332 |                                                                                                                      | 0.033577 | 0.002613 | .002613 0.001817 0.005285 | 0.005285 | 0.000712 | 0.000821 |
| Hotel                                  | 0.543088 0.044216 | 0.044216                   | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.033577 | 0.002613 | 0.001817                  | 0.005285 | 0.000712 | 0.000821 |
| Quality Restaurant                     | 0.543088          | 43088 0.044216             | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712          | 0.033577 | 0.002613 | 0.001817                  | 0.005285 | 0.000712 | 0.000821 |
| Regional Shopping Center               | 0.543088          | 0.044216                   | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.033577 | 0.002613 | 0.001817                  | 0.005285 | 0.000712 | 0.000821 |
|                                        |                   |                            |          |          |          |          |                                                                                                                      |          |          |                           |          |          |          |

### 5.0 Energy Detail

Historical Energy Use: N

# 5.1 Mitigation Measures Energy

Date: 1/6/2021 1:49 PM Page 30 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

|                           | ROG    | ROG NOX CO                  | တ             | S02    | Fugitive<br>PM10                      | Egitive Exhaust PM10 PM10 Total | PM10<br>Total | Fugitive<br>PM2.5 | Fugitive Exhaust<br>PM2.5 PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total | CH4    | NZO              | C02e           |
|---------------------------|--------|-----------------------------|---------------|--------|---------------------------------------|---------------------------------|---------------|-------------------|---------------------------------|----------------|----------|----------------|----------------------------------------------|--------|------------------|----------------|
| Category                  |        |                             |               |        | o/ql                                  | iay                             |               |                   |                                 |                |          |                | /kep/ql                                      | ay     |                  |                |
| NaturalGas<br>Mitigated   | 0.7660 |                             | 4.2573 0.0418 | 0.0418 |                                       | 0.5292 0.5292                   | 0.5292        | <b>-</b>          | 0.5292 0.5292                   | 0.5292         | -        | 8,355.983<br>2 | 8,355.983 $8,355.983$ $0.1602$               | 0.1602 | 0.1532 8,405.638 | 8,405.638<br>7 |
| NaturalGas<br>Unmitigated | 0.7660 | 0.7660 6.7462 4.2573 0.0418 | 4.2573        | 0.0418 | • • • • • • • • • • • • • • • • • • • | 0.5292                          | 0.5292        |                   | 0.5292                          | 0.5292         |          | 8,355.983      | 8,355.983 8,355.983 0.1602<br>2 2            | 0.1602 | 0.1532 8,405.638 | 8,405.638      |

(

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas Unmitigated

| NaturalGa<br>s Use                                | ROG             | XON    | පි     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio-CO2               | NBio-CO2       | Bio-CO2 NBio-CO2 Total CO2 | CH4             | NZO             | C02e           |
|---------------------------------------------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|-----------------------|----------------|----------------------------|-----------------|-----------------|----------------|
|                                                   |                 |        |        |                 | lb/day.          | lay             |                 |                   |                  |                 |                       |                | )(q)                       | lb/day          |                 |                |
| 1119.16 🐈 0                                       | 0.0121          | 0.1031 | 0.0439 | 6.6000e-<br>004 |                  | 8.3400e-<br>003 | 8.3400e-<br>003 |                   | 8.3400e-<br>003  | 8.3400e-<br>003 |                       | 131.6662       | 131.6662                   | 2.5200e-<br>003 | 2.4100e-<br>003 | 132.4486       |
|                                                   | 0.3859          | 3.2978 | 1,4033 | 0.0211          |                  | 0.2666          | 0.2666          | <br>              | 0.2666           | 0.2666          | 1<br>1<br>1<br>1<br>1 | 4,209.916<br>4 | 4,209.916<br>4             | 0.0807          | 0.0772          | 4,234.933<br>9 |
|                                                   | 0.0138          | 0.1258 | 0.1057 | 7.5000e-<br>004 |                  | 9.5600e-<br>003 | 9.5600e-<br>003 | *<br>             | 9.5600e-<br>003  | 9.5600e-<br>003 |                       | 150.9911       | 150.9911                   | 2.8900e-<br>003 | 2.7700e-<br>003 | 151.8884       |
| High Tumover (Sit 22759.9 4 0<br>Down Restaurant) | 0.2455          | 2.2314 | 1.8743 | 0.0134          |                  | 0.1696          | 0.1696          |                   | 0.1696           | 0.1696          |                       | 2,677.634<br>2 | 2,677.634<br>2             | 0.0513          | 0.0491          | 2,693.546      |
| 4769.72 <b>11</b> 0                               | 0.0514          | 0.4676 | 0.3928 | 2.8100e-<br>003 |                  | 0.0355          | 0.0355          |                   | 0.0355           | 0.0355          |                       | 561.1436       | 561.1436                   | 0.0108          | 0.0103          | 564.4782       |
| 5057.75                                           | 0.0545          | 0.4959 | 0.4165 | 2.9800e-<br>003 |                  | 0.0377          | 0.0377          |                   | 0.0377           | 0.0377          |                       | 595.0298       | 595.0298                   | 0.0114          | 0.0109          | 598.5658       |
| 251.616 2.                                        | 2.7100e-<br>003 | 0.0247 | 0.0207 | 1.5000e-<br>004 |                  | 1.8700e-<br>003 | 1.8700e-<br>003 | <b></b>           | 1.8700e-<br>003  | 1.8700e-<br>003 |                       | 29.6019        | 29.6019                    | 5.7000e-<br>004 | 5.4000e-<br>004 | 29.7778        |
| _                                                 | 0.7660          | 6.7463 | 4.2573 | 0.0418          |                  | 0.5292          | 0.5292          |                   | 0.5292           | 0.5292          |                       | 8,355,983<br>2 | 8,355,983<br>2             | 0.1602          | 0.1532          | 8,405.638<br>7 |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas

#### Mitigated

| C02e                       |          | 132.4486                    | 4,234.933              | 151.8884                   | 2,693.546                              | 564.4782        | 598.5658              | 29.7778                      | 8,405.638<br>7 |
|----------------------------|----------|-----------------------------|------------------------|----------------------------|----------------------------------------|-----------------|-----------------------|------------------------------|----------------|
| NZO                        |          | 2.4100e-<br>003             | 0.0772                 | 2.7700e-<br>003            | 0.0491                                 | 0.0103          | 0.0109                | 5.4000e-<br>004              | 0.1532         |
| CHA                        | lay      | 2.5200e-<br>003             | 0.0807                 | 2.8900e-<br>003            | 0.0513                                 | 0.0108          | 0.0114                | 5.7000e-<br>004              | 0.1602         |
| Total CO2                  | ľb/day   | 131.6662                    | 4,209.916<br>4         | 150.9911                   | 2,677.634<br>2                         | 561.1436        | 595.0298              | 29.6019                      | 8,355.983<br>2 |
| Bio-CO2 NBio-CO2 Total CO2 |          | 131.6662                    | 4,209.916<br>4         | 150.9911                   | 2,677.634                              | 561.1436        | 595.0298              | 29.6019                      | 8,355.983<br>2 |
| Bio-CO2                    |          |                             |                        | 1                          |                                        |                 | :<br>:<br>:<br>:      |                              |                |
| PM2.5<br>Total             |          | 8.3400 <del>c-</del><br>003 | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003              | 0.5292         |
| Exhaust<br>PM2.5           |          | 8.3400e-<br>003             | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003              | 0.5292         |
| Fugitive<br>PM2.5          |          |                             |                        |                            |                                        |                 |                       |                              |                |
| PM10<br>Total              |          | 8.3400e-<br>003             | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003              | 0.5292         |
| Exhaust<br>PM10            | lb/day   | 8.3400e-<br>003             | 0.2666                 | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003              | 0.5292         |
| Fugitive<br>PM10           | lb/      |                             |                        |                            |                                        |                 |                       |                              |                |
| S02                        |          | 6.6000e-<br>004             | 0.0211                 | 7.5000e-<br>004            | 0.0134                                 | 2.8100e-<br>003 | 2.9800e-<br>003       | 1.5000e-<br>004              | 0.0418         |
| 00                         |          | 0.0439                      | 1.4033                 | 0.1057                     | 1.8743                                 | 0.3928          | 0.4165                | 0.0207                       | 4.2573         |
| NOX                        |          | 0.1031                      | 3.2978                 | 0.1258                     | 2.2314                                 | 0.4676          | 0.4959                | 0.0247                       | 6.7463         |
| ROG                        |          | 0.0121                      | 0.3859                 | 0.0138                     | 0.2455                                 | 0.0514          | 0.0545                | 2.7100 <del>c</del> -<br>003 | 0.7660         |
| NaturalGa<br>s Use         | kBTU/yr  | 1.11916                     | 35.7843                | 1.28342                    | 22.7599                                | 4.76972         | 5.05775               | 0.251616                     |                |
|                            | Land Use | Apartments Low<br>Rise      | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hoteí           | Quality<br>Restaurant | Regional<br>Shopping Center  | Total          |

### 6.0 Area Detail

### 6.1 Mitigation Measures Area

Date: 1/6/2021 1:49 PM Page 33 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| 0.3300 18,259.11<br>92 | 0.0000 18,148.59 18,148.59 0.4874 0.3300 18,259.11<br>50 50 50    |
|------------------------|-------------------------------------------------------------------|
| 0.3300                 | .3300                                                             |
| ļ · · · ·              | <u>:</u> °                                                        |
| 0.4874                 | 0.4874                                                            |
| 18,148.59<br>50        | 18,148.59                                                         |
| 18,148.59<br>50        | 18,148.59                                                         |
| 0.0000                 | 0.0000                                                            |
|                        | 1.5974                                                            |
| 1.5974                 | 1.5974                                                            |
|                        |                                                                   |
| 1.5974                 | 1.5974                                                            |
| 1.5974                 | 1.5974                                                            |
|                        | <br> <br> <br> <br> <br>                                          |
| 0.0944                 | 0.0944                                                            |
| 88.4430                | 88.4430                                                           |
| 15.0496                | 15.0496                                                           |
| 30.5020                | 30.5020 15.0496 88.4430 0.0944                                    |
| Mitigated              | Unmitigated                                                       |
|                        | 30.5020 15.0496 88.4430 0.0944 1.5974 1.5974 1.5974 1.5974 1.5974 |

6.2 Area by SubCategory

| D         |
|-----------|
| O)        |
| Ħ         |
| ö         |
|           |
| ∵⊨        |
| 5         |
| 드         |
| $\supset$ |

| COZe                         |             | 0.0000                   | 0.0000                    | 18,106.96<br>50              | 152.1542        | 18,259.11<br>92      |
|------------------------------|-------------|--------------------------|---------------------------|------------------------------|-----------------|----------------------|
| N2O                          |             |                          |                           | 0.3300                       |                 | 0.3300               |
| CH4                          | Àe .        |                          |                           | 0.3450                       | 0.1424          | 0.4874               |
| Total CO2                    | lb/day      | 0.0000                   | 0.0000                    | 18,000.00                    | 148.5950        | 18,148.59 0<br>50    |
| Bio- CO2 NBio- CO2 Total CO2 |             |                          |                           | 18,000.00 18,000.00<br>00 00 | 148.5950        | 0 18,148.59 18<br>50 |
| Bio-CO2                      |             |                          |                           | 0.0000                       |                 | 0.0000               |
| PM2.5<br>Total               |             | 0.0000                   | 0.0000                    | 1.1400                       | 0.4574          | 1.5974               |
| Exhaust<br>PM2.5             |             | 0.0000                   | 0.0000                    | 1.1400                       | 0.4574          | 1.5974               |
| Fugitive<br>PM2,5            |             |                          |                           |                              |                 |                      |
| PM10<br>Total                |             | 0.0000                   | 0.0000                    | 1.1400                       | 0.4574          | 1.5974               |
| Exhaust<br>PM10              | lb/day      | 0.0000                   | 0.0000                    | 1.1400                       | 0.4574          | 1.5974               |
| Fugitive<br>PM10             | /IP/        |                          | i<br> <br> <br> <br> <br> |                              |                 |                      |
| SO2                          |             |                          |                           | 0.0900                       | 4.3600e-<br>003 | 0.0944               |
| ဝ၁                           |             |                          |                           | 6.0000                       | 82.4430         | 88.4430              |
| NOx                          |             |                          |                           | 14.1000                      | 0.9496          | 15.0496              |
| ROG                          |             | 2.2670                   | 24.1085                   | 1.6500                       | 2.4766          | 30.5020              |
|                              | SubCategory | Architectural<br>Coating | Consumer<br>Products      | Hearth                       | Landscaping     | Total                |

CalEEMod Version: CalEEMod.2016.3.2

Page 34 of 35

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

### 6.2 Area by SubCategory

#### Mitigated

| E 75 285                     |             |                          |                      |                               |                   | <del></del>     |
|------------------------------|-------------|--------------------------|----------------------|-------------------------------|-------------------|-----------------|
| CO2e                         |             | 0.0000                   | 0.0000               | 18,106.96<br>50               | 152.1542          | 18,259.11<br>92 |
| N2O                          |             |                          |                      | 0.3300                        |                   | 0.3300          |
| CH4                          | ay          |                          |                      | 0.3450                        | 0.1424            | 0.4874          |
| Total CO2                    | lb/day      | 0.000.0                  | 0.000.0              |                               | 148.5950          | 18,148.59<br>50 |
| Bio- CO2 NBio- CO2 Total CO2 |             |                          |                      | 18,000.00 18,000.00<br>00 00  | 148.5950 148.5950 | 18,148.59<br>50 |
| Bio- CO2                     |             |                          |                      | 0.0000                        | ;<br>:<br>:<br>:  | 0.0000          |
| PM2.5<br>Total               |             | 0.0000                   | 0.000.0              | 1.1400                        | 0.4574            | 1.5974          |
| Exhaust<br>PM2.5             |             | 0.0000                   | 0.0000               | 1.1400                        | 0.4574            | 1.5974          |
| Fugitive<br>PM2.5            |             |                          |                      | <br> <br> <br> <br> <br> <br> |                   |                 |
| PM10<br>Total                |             | 0.0000                   | 0.0000               | 1.1400                        | 0.4574            | 1.5974          |
| Exhaust<br>PM10              | lb/day      | 0.0000                   | 0.0000               | 1.1400                        | 0.4574            | 1.5974          |
| Fugitive<br>PM10             | )/ql        |                          |                      |                               |                   |                 |
| S02                          |             |                          |                      | 0.0900                        | 4.3600e-<br>003   | 0.0944          |
| 00                           |             |                          |                      | 6.0000                        | 82.4430           | 88.4430         |
| ×ON                          |             |                          |                      | 14.1000 6.0000                | 0.9496            | 30.5020 15.0496 |
| ROG                          |             | 2.2670                   | 24.1085              | 1.6500                        | 2.4766            | 30.5020         |
|                              | SubCategory | Architectural<br>Coating | Consumer<br>Products | Hearth                        | Landscaping       | Total           |

### 7.0 Water Detail

### 7.1 Mitigation Measures Water

### 8.0 Waste Detail

## 8.1 Mitigation Measures Waste

### 9.0 Operational Offroad

| Fuel Type     |
|---------------|
| oad Factor    |
| se Power      |
| ır Hors       |
| Days/Yea      |
| Hours/Day     |
| Number        |
| 9             |
| Equipment Typ |
|               |

### 10.0 Stationary Equipment

Date: 1/6/2021 1:49 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

# Fire Pumps and Emergency Generators

| Equip       | Boilers |
|-------------|---------|
| ment Type   |         |
| V           |         |
| Number      |         |
| Hours/Day   |         |
|             |         |
| Hours∕Year  |         |
| Horse F     |         |
| Power       |         |
| Load Factor |         |
| Fuel Type   |         |
|             |         |

Fuel Type

Boiler Rating

Heat Input/Year

Heat Input/Day

Number

Number

### 11.0 Vegetation

Page 35 of 35

**User Defined Equipment** 

Equipment Type

Equipment Type

Date: 1/12/2021 2:26 PM Page 1 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

# Village South Specific Plan (Proposed)

# Los Angeles-South Coast County, Annual

### 1.0 Project Characteristics

### 1.1 Land Usage

| Floor Surface Area Population | 0).00                   | 0.00                                | 0 00:     | 0 00:              | ).00                | 0.00                | 00.00                    |
|-------------------------------|-------------------------|-------------------------------------|-----------|--------------------|---------------------|---------------------|--------------------------|
| 3, 6                          | 45,000.00               | 36,000.00                           | 72,600.00 |                    |                     | 6                   | 56,000.00                |
| Lot Acreage                   | 1.03                    | 0.83                                | 1.67      | 0.18               | 1.56                | 25.66               | 1.29                     |
| Metric                        | 1000sqft                | 1000sqft                            | Room      | 1000sqft           | Dwelling Unit       | Dwelling Unit       | 1000sqft                 |
| Size                          | 45.00                   | 36.00                               | 50.00     | 8.00               | 25.00               | 975.00              | 56.00                    |
| Land Uses                     | General Office Building | High Turnover (Sit Down Restaurant) | Hotel     | Quality Restaurant | Apartments Low Rise | Apartments Mid Rise | Regional Shopping Center |

# 1.2 Other Project Characteristics

| 33                        | 2028             |                            | 9000                        |
|---------------------------|------------------|----------------------------|-----------------------------|
| Precipitation Freq (Days) | Operational Year |                            | N2O Intensity 0.0 (Ib/MWhr) |
| 2.2                       |                  |                            | 0.029                       |
| Wind Speed (m/s)          |                  | a Edison                   | CH4 Intensity<br>(Ib/MWhr)  |
| Urban                     | თ                | Southern California Edison | 702.44                      |
| Urbanization              | Climate Zone     | Utility Company            | CO2 Intensity<br>(Ib/MWhr)  |

# 1.3 User Entered Comments & Non-Default Data

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses,

Construction Phase - See SWAPE comment regarding individual construction phase lengths.

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use -

Construction Off-road Equipment Mitigation - See SWAPE comment on construction-related mitigation.

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

Trips and VMT - Local hire provision

| New Value     | 0.00              | 0.00              | 0.00          | 0.00          | 10.00            | 10.00            | 10.00            | 10.00            | 10.00            | 10.00            | 6.17           | 3.87           | 1.39            | 79.82           |
|---------------|-------------------|-------------------|---------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|----------------|-----------------|-----------------|
| Default Value | 1,019.20          | 1,019.20          | 1.25          | 48.75         | 14.70            | 14.70            | 14.70            | 14.70            | 14.70            | 14.70            | 7.16           | 6.39           | 2.46            | 158.37          |
| Column Name   | FireplaceWoodMass | FireplaceWoodMass | NumberWood    | NumberWood    | WorkerTripLength | WorkerTripLength | WorkerTripLength | WorkerTripLength | WorkerTripLength | WorkerTripLength | ST_TR          | ST_TR          | ST_TR           | ST_TR           |
| Täble:Name    | tblFireplaces     | tblFireplaces     | tblFireplaces | tblFireplaces | tblTripsAndVMT   | tblTripsAndVMT   | tblTripsAndVMT   | tbITripsAndVMT   | tbiTripsAndVMT   | tblTripsAndVMT   | tblVehideTrips | tblVehideTrips | tblVehicleTrips | tblVehicleTrips |

Date: 1/12/2021 2:26 PM Page 3 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

| bit Vehicle Trips         94.46         55.99           bit Vehicle Trips         91.TR         49.97         10.74           bit Vehicle Trips         91.TR         6.07         6.16           bit Vehicle Trips         51.TR         6.76         6.16           bit Vehicle Trips         51.TR         1.05         0.69           bit Vehicle Trips         50.TR         7.216         5.765           bit Vehicle Trips         50.TR         5.32         4.13           bit Vehicle Trips         50.TR         5.224         6.41           bit Vehicle Trips         WD_TR         6.53         4.13           bit Vehicle Trips         WD_TR         6.27         6.41           bit Vehicle Trips         WD_TR         42.75         0.00           bit Vehicle Trips         WD_TR         42.70         9.43           bit Vehicle Trips         WD_TR         42.70         9.43           bit Vehicle Trips         WD_TR         42.70         0.00           bit Vehicle Trips         WD_TR         42.70         0.00           bit Vehicle Trips         WD_TR         42.70         0.00           bit Vehicle Trips         WD_TR         42.70         0.00 </th <th>tblVehicleTrips</th> <th>ST_TR</th> <th>8.19</th> <th>3.75</th> | tblVehicleTrips | ST_TR              | 8.19   | 3.75  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--------|-------|
| SU_TR         49,97           SU_TR         6,07           SU_TR         6,07           SU_TR         5,86           SU_TR         1,05           SU_TR         5,96           SU_TR         72,16           SU_TR         25,24           WD_TR         11,03           WD_TR         11,03           WD_TR         42,76           NUMDerCatalytic         48,75           NumberNoncatalytic         48,75           NumberNoncatalytic         48,75           NumberNoncatalytic         1,26           NumberNoncatalytic         48,75           NumberNoncatalytic         25,00           WoodstoveDay/ear         25,00           WoodstoveDay/ear         25,00           WoodstoveDay/ear         25,00           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VehicleTrips    | ST_TR              | 94.36  | 63.99 |
| SU_TR       6.07         SU_TR       5.86         SU_TR       5.86         SU_TR       1.05         SU_TR       1.05         SU_TR       72.16         SU_TR       72.16         SU_TR       6.59         WD_TR       6.59         WD_TR       6.65         WD_TR       8.17         WD_TR       42.70         NumberCatalytic       42.70         NumberCatalytic       42.70         NumberCatalytic       48.75         NumberCatalytic       48.75         NumberCatalytic       48.75         NumberCatalytic       48.75         NumberCatalytic       48.75         NumberCatalytic       48.75         WoodstoveDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveDaySear       25.00         WoodstoveDaySear       25.00         WoodstoveDaySear       25.00         WoodstoveDaySear       25.00         Wood                                                                                                                                                                                                                                                              | NehicleTrips    | ST_TR              | 49.97  | 10.74 |
| SU_TR       5.86         SU_TR       1.05         SU_TR       1.05         SU_TR       5.96         SU_TR       5.96         SU_TR       25.24         WD_TR       6.65         WD_TR       6.65         WD_TR       8.17         WD_TR       8.17         WD_TR       42.70         NumberCatalytic       1.25         NumberCatalytic       48.75         NumberInnoratalytic       48.75         NumberDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveWoodMass       999.60         WoodstoveWoodMass       999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | olVehicleTrips  | SU_TR              | 6.07   | 6.16  |
| SU_TR       1.05         SU_TR       13184         SU_TR       5.96         SU_TR       72.16         SU_TR       72.16         SU_TR       72.16         WD_TR       6.59         WD_TR       11.03         WD_TR       83.95         WD_TR       42.70         WD_TR       42.70         NumberCatalytic       1.25         NumberCatalytic       48.75         NumberCatalytic       48.75         NumberNoncatalytic       48.75         WoodstoveDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveWoodMass       999.60         WoodstoveWoodMass       999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ylVehicleTrips  | SU_TR              | 5.86   | 4.18  |
| SU_TR       5.95         SU_TR       5.95         SU_TR       5.95         SU_TR       25.24         WD_TR       6.59         WD_TR       6.65         WD_TR       11.03         WD_TR       81.7         WD_TR       89.95         WD_TR       42.70         NumberCatalytic       1.25         NumberNoncatalytic       1.25         NumberNoncatalytic       48.75         NumberNoncatalytic       25.00         WoodstoveDayYear       25.00         WoodstoveDayYear       25.00         WoodstoveWoodMass       999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ₀lVehicleTrips  | SU_TR              | 1.05   | 69.0  |
| SU_TR         72.16           SU_TR         72.16           WD_TR         6.59           WD_TR         6.65           WD_TR         11.03           WD_TR         8.17           WD_TR         82.35           WD_TR         42.70           NumberCatalytic         42.70           NumberNoncatalytic         48.75           NumberNoncatalytic         48.75           NumberNoncatalytic         25.00           WoodstoveDayYear         25.00           WoodstoveDayYear         25.00           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olVehicleTrips  | SU_TR              | 131.84 | 78.27 |
| SU_TR         72.16           SU_TR         6.59           WD_TR         6.65           WD_TR         11.03           WD_TR         127.15           WD_TR         89.95           WD_TR         42.70           NumberCatalytic         48.75           NumberNoncatalytic         48.75           NumberNoncatalytic         25.00           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | olVehicleTrips  | SU_TR              | 5.95   | 3.20  |
| SU_TR         25.24           WD_TR         6.59           WD_TR         6.65           WD_TR         11.03           WD_TR         81.7           WD_TR         89.95           WD_TR         42.70           NumberCatalytic         48.75           NumberNoncatalytic         48.75           NumberNoncatalytic         1.25           NumberNoncatalytic         48.75           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | olVehicleTrips  | SU_TR              | 72.16  | 57.65 |
| WD_TR         6.59           WD_TR         11.03           WD_TR         127.15           WD_TR         81.7           WD_TR         82.95           WD_TR         42.70           NumberCatalytic         1.25           NumberNoncatalytic         48.75           NumberNoncatalytic         48.75           NumberNoncatalytic         25.00           WoodstoveDayYear         25.00           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | olVehicleTrips  | SU_TR              | 25.24  | 6.39  |
| WD_TR         6.65           WD_TR         11.03           WD_TR         8.17           WD_TR         89.95           WD_TR         42.70           NumberCatalytic         48.75           NumberNoncatalytic         48.75           NumberNoncatalytic         48.75           NumberNoncatalytic         25.00           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olVehicleTrips  | WD_TR              | 6.59   | 5.83  |
| WD_TR         11.03           WD_TR         8.17           WD_TR         8.17           WD_TR         89.95           WD_TR         42.70           NumberCatalytic         1.25           NumberNoncatalytic         48.75           NumberNoncatalytic         25.00           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | blVehicleTrips  | WD_TR              | 6.65   | 4.13  |
| WD_TR         8.17           WD_TR         8.17           WD_TR         89.95           NumberCatalytic         42.70           NumberNoncatalytic         48.75           NumberNoncatalytic         48.75           NumberNoncatalytic         48.75           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tblVehicleTrips | WD_TR              | 11.03  | 6.41  |
| WD_TR         8.17           WD_TR         89.95           WD_TR         42.70           NumberCatalytic         1.25           NumberNoncatalytic         48.75           NumberIntoratalytic         48.75           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tblVehicleTrips | WD_TR              | 127.15 | 65.80 |
| WD_TR         89.95           WumberCatalytic         1.25           NumberNoncatalytic         48.75           NumberNoncatalytic         1.25           NumberNoncatalytic         48.75           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | blVehicleTrips  | WD_TR              | 8.17   | 3.84  |
| WD_TR         42.70           NumberCatalytic         1.25           NumberNoncatalytic         48.75           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | blVehicleTrips  | WD_TR              | 89.95  | 62.64 |
| NumberCatalytic         48.75           NumberNoncatalytic         1.25           NumberNoncatalytic         48.75           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | blVehicleTrips  | WD_TR              | 42.70  | 9.43  |
| NumberCatalytic 48.75  NumberNoncatalytic 1.25  NumberNoncatalytic 48.75  WoodstoveDayYear 25.00  WoodstoveWoodMass 999.60  WoodstoveWoodMass 999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | blWoodstoves    | NumberCatalytic    | 1.25   | 0.00  |
| NumberNoncatalytic         1.25           NumberNoncatalytic         48.75           WoodstoveDayYear         25.00           WoodstoveWoodMass         999.60           WoodstoveWoodMass         999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | blWoodstoves    | NumberCatalytic    | 48.75  | 0.00  |
| NumberNoncatalytic 48.75  WoodstoveDayYear 25.00  WoodstoveWoodMass 999.60  WoodstoveWoodMass 999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | blWoodstoves    | NumberNoncatalytic | 1.25   | 0.00  |
| WoodstoveDayYear     25.00       WoodstoveWoodMass     999.60       WoodstoveWoodMass     999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tblWoodstoves   | NumberNoncatalytic | 48.75  | 0.00  |
| WoodstoveDayYear 25.00 WoodstoveWoodMass 999.60 WoodstoveWoodMass 999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | blWoodstoves    | WoodstoveDayYear   | 25.00  | 0.00  |
| WoodstoveWoodMass 999.60 WoodstoveWoodMass 999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olWoodstoves    | WoodstoveDayYear   | 25.00  | 0.00  |
| WoodstoveWoodMass 999.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /Woodstoves     | WoodstoveWoodMass  | 09.666 | 0.00  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Woodstoves      | WoodstoveWoodMass  | 09.666 | 0.00  |

### 2.0 Emissions Summary

Date: 1/12/2021 2:26 PM Page 4 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.1 Overall Construction

### **Unmitigated Construction**

| CO2e                             |         | 0.0000 212.2661               | 1,421.692      | 1,345.229<br>1             | 44.8311         | 1,421.692<br>5 |
|----------------------------------|---------|-------------------------------|----------------|----------------------------|-----------------|----------------|
| NZO                              |         | 0.0000                        | 0.0000         | 0.0000                     | 0.0000          | 0.0000         |
| CH4                              | MT/yr   | 0.0600                        | 0.1215         | 0.1115                     | 7.8300e-<br>003 | 0.1215         |
| Total CO2                        | EW.     | 210.7654                      | 1,418.655<br>4 | 1,342.441 1,342.441<br>2 2 | 44.6355         | 1,418.655<br>4 |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |         | 210.7654 210.7654             | 1,418.655      | 1,342.441                  | 44.6355         | 1,418.655<br>4 |
| Bio-CO2                          |         | 0.0000                        | 0.0000         | 0.0000                     | 0.0000          | 0.0000         |
| PM2.5<br>Total                   |         | 0.2542                        | 0.3621         | 0.3195                     | 0.0118          | 0.3621         |
| Exhaust<br>PM2.5                 |         | 0.0754                        | 0.1103         | 0.0912                     | 5.9700e-<br>003 | 0.1103         |
| Fugitive<br>PM2.5                |         | 0.1788                        | 0.2518         | 0.2283                     | 5.8700e-<br>003 | 0.2518         |
| PM10<br>Total                    |         | 0.4958                        | 1.0683         | 0.9468                     | 0.0285          | 1.0683         |
| Exhaust<br>PM10                  | tons/yr | 0.0817                        | 0.1175         | 0.0971                     | 6.3900e-<br>003 | 0.1175         |
| Fugitive<br>PM10                 | ton     | 0.4141                        | 0.9509         | 0.8497                     | 0.0221          | 6056.0         |
| 802                              |         | 0.1704 1.8234 1.1577 2.3800e- | 0.0155         | 0.0147                     | 5.0000e- C      | 0.0155         |
| တ                                |         | 1.1577                        | 5.1546         | 4.7678                     | 0.2557          | 5.1546         |
| NOX                              |         | 1.8234                        | 4.0240         | 3.2850                     | 0.1313          | 4.0240         |
| ROG                              |         | 0.1704                        | 0.5865         | 0.5190                     | 4.1592          | 4.1592         |
|                                  | Year    | 2021                          | 2022           | 2023                       | 2024            | Maximum        |

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 5 of 44

2.1 Overall Construction Mitigated Construction

| C02e                         |         | 212.2658                 | 1,421.692      | 1,345.228                  | 44.8311         | 1,421.692                  |
|------------------------------|---------|--------------------------|----------------|----------------------------|-----------------|----------------------------|
| CH4 N2O                      |         | 0.0000                   | 0.0000         | 0.0000                     | 0.000.0         | 0.0000                     |
|                              | MT/yr   | 0.0600                   | 0.1215         | 0.1115                     | 7.8300e-<br>003 | 0.1215                     |
| Total CO2                    | IW.     | 210.7651                 | 1,418.655<br>0 | 1,342.440 1,342.440<br>9 9 | 44.6354         | 1,418.655<br>0             |
| NBio-CO2                     |         | 0.0000 210.7651 210.7651 | 1,418.655<br>0 | 1,342.440<br>9             | 44.6354         | 1,418.655 1,418.655<br>0 0 |
| Bio- CO2 NBio- CO2 Total CO2 |         | 0.0000                   | 0.0000         | 0.0000                     | 0.0000          | 0.0000                     |
| PM2.5<br>Total               |         | 0.2542                   | 0.3621         | 0.3195                     | 0.0118          | 0.3621                     |
| Exhaust<br>PM2.5             |         | 0.0754                   | 0.1103         | 0.0912                     | 5.9700e-<br>003 | 0.1103                     |
| Fugitive<br>PM2.5            |         | 0.1788                   | 0.2518         | 0.2283                     | 5.8700e-<br>003 | 0.2518                     |
| PIM10<br>Total               |         | 0.4958                   | 1.0683         | 0.9468                     | 0.0285          | 1.0683                     |
| Exhaust<br>PM10              | tons/yr | 0.0817                   | 0.1175         | 0.0971                     | 6.3900e-<br>003 | 0.1175                     |
| Fugitive<br>PM10             |         | 0.4141                   | 0.9509         | 0.8497                     | 0.0221          | 0.9509                     |
| <b>S</b> 02                  |         | 2.3800e-<br>003          | 0.0155         | 0.0147                     | 5.0000e-<br>004 | 0.0155                     |
| ဝ၁                           |         | 1.1577 2.3800e-<br>003   |                | 4.7678                     | 0.2557          | 5.1546                     |
| NOX                          |         | 1.8234                   | 4.0240         | 3.2850                     | 0.1313          | 4.0240                     |
| ROG                          |         | 0.1704                   | 0.5865         | 0.5190                     | 4.1592          | 4.1592                     |
|                              | Year    | 2021                     | 2022           | 2023                       | 2024            | Maximum                    |

| CO2e                        | 0.00                 |                                              |            |           |           |           |            |           |           |           |
|-----------------------------|----------------------|----------------------------------------------|------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|
| N20                         | 0.00                 |                                              |            |           |           |           |            |           |           |           |
| СН                          | 0.00                 | larter)                                      |            |           |           |           |            |           |           |           |
| Total CO2                   | 0.00                 | OX (tons/qu                                  |            |           |           |           |            |           |           |           |
| NBio-CO2                    | 0.00                 | ed ROG + N                                   | 1.4091     | 1.3329    | 1.1499    | 1.1457    | 1.1415     | 1.0278    | 0.9868    | 0.9831    |
| Bio- CO2 NBio-CO2 Total CO2 | 0.00                 | Maximum Mitigated ROG + NOX (tons/quarter)   |            |           |           | ,         |            |           |           |           |
| PM2.5<br>Total              | 0.00                 | Maxir                                        |            |           |           |           |            |           |           |           |
| Exhaust<br>PM2.5            | 0.00                 | quarter)                                     |            |           |           |           |            |           |           |           |
| Fugitive<br>PM2.5           | 0.00                 | Maximum Unmitigated ROG + NOX (tons/quarter) |            |           |           |           |            |           |           |           |
| PM10<br>Total               | 0.00                 | ited ROG +                                   | 1.4091     | 1.3329    | 1.1499    | 1.1457    | 1.1415     | 1.0278    | 0.9868    | 0.9831    |
| Exhaust<br>PM10             | 0.00                 | ım Uninitige                                 |            |           |           |           |            |           |           | :         |
| Fugitive Exhaust PM10 PM10  | 0.00                 | Maximu                                       |            | Š         |           |           |            |           |           |           |
| S02                         | 0.00                 | End Date                                     | 11-30-2021 | 2-28-2022 | 5-31-2022 | 8-31-2022 | 11-30-2022 | 2-28-2023 | 5-31-2023 | 8-31-2023 |
| ဝ၁                          | 0.00                 | End                                          | 11-30      | 2-28      | 5-31      | 8-31      | 11-30      | 2-28      | 5-31      | 8-31      |
| XON<br>V                    | 0.00                 | Start Date                                   | 9-1-2021   | 12-1-2021 | 3-1-2022  | 6-1-2022  | 9-1-2022   | 12-1-2022 | 3-1-2023  | 6-1-2023  |
| Rog                         | 0.00                 | Sta                                          | 9-         | 12-       | <u>ڄ</u>  | 9         | 9-1        | 12-       | <u>£</u>  | 6-1       |
|                             | Percent<br>Reduction | Quarter                                      | -          | 2         | 8         | 4         | 5          | 9         | 7         | 8         |

CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 6 of 44

Date: 1/12/2021 2:26 PM

| 0.9798     | 2.8757    | 1.6188    | 2.8757  |
|------------|-----------|-----------|---------|
| 0.9798     | 2.8757    | 1.6188    | 2.8757  |
| 11-30-2023 | 2-29-2024 | 5-31-2024 | Highest |
| 9-1-2023   | 12-1-2023 | 3-1-2024  |         |
| 6          | 10        | 11        |         |

### 2.2 Overall Operational

### **Unmitigated Operational**

| 1.000000                     | al Tipo, School |                          | 1.                  | , -            | _                                  | _                        |                 |
|------------------------------|-----------------|--------------------------|---------------------|----------------|------------------------------------|--------------------------|-----------------|
| CO2e                         |                 | 222.5835                 | 3,913.283<br>3      | 7,629.016<br>2 | 514.8354                           | 683.7567                 | 12,963.47<br>51 |
| N2O.                         |                 | 3.7400e-<br>003          | 0.0468              | 0.0000         | 0.0000                             | 0.0755                   | 0.1260          |
| O. 4                         | 5               | 0.0201                   | 0.1303              | 0.3407         | 12.2811                            | 3.0183                   | 15.7904         |
| Total CO2                    | MT/yr           | 220.9670                 | 3,896.073           | 7,620.498<br>6 | 207.8079                           | 585.8052                 | 12,531.15<br>19 |
| Bio- CO2 NBio- CO2 Total CO2 |                 | 220.9670 220.9670        | 3,896.073 3,896.073 | 7,620.498      | 0.000.0                            | 556.6420                 | 12,294.18<br>07 |
| Bio- CO2                     |                 | 0.0000                   | 0.000.0             | 0.0000         | 207.8079                           | 29.1632                  | 236.9712        |
| PM2.5<br>Total               |                 | 0.0714                   | 0.0966              | 2.1434         | 0.000.0                            | 0.0000                   | 2.3114          |
| Exhaust<br>PM2.5             |                 | 0.0714                   | 0.0966              | 0.0539         | 0.0000                             | 0.0000                   | 0.2219          |
| Fugitive<br>PM2.5            |                 |                          | <br>                | 2.0895         | <br> <br> <br> <br> <br> <br> <br> | <br> <br> <br> <br> <br> | 2.0895          |
| PM10<br>Total                |                 | 0.0714                   | 0.0966              | 7.8559         | 0.0000                             | 0.0000                   | 8.0240          |
| Exhaust<br>PM10              | ilyr            | 0.0714                   | 9960.0              | 0.0580         | 0.0000                             | 0.0000                   | 0.2260          |
| Fugitive<br>PM10             | fons/yr         |                          |                     | 7.7979         |                                    | <br> <br>                | 7.7979          |
| S02                          |                 | 1.670 <b>0</b> e-<br>003 | 7.6200e-<br>003     | 0.0821         |                                    |                          | 0.0914          |
| <b>9</b>                     |                 | 0.2950 10.3804 1.6700e-  | 0.7770              | 19.1834        |                                    | <b>;</b>                 | 30.3407 0.0914  |
| ×ON                          |                 |                          | 1.2312              | 7.9962         |                                    |                          | 9.5223          |
| ROG                          |                 | 5.1437                   | 0.1398              | 1.5857         |                                    |                          | 6.8692          |
|                              | Category        | Area                     | Energy              | Mobile         | Waste                              | Water                    | Total           |

Date: 1/12/2021 2:26 PM Page 7 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

2.2 Overall Operational Mitigated Operational

| CO2e                         |          | 222.5835        | 3,913.283                  | 7,629.016                  | 514.8354 | 683.7567 | 12,963.47<br>51 |
|------------------------------|----------|-----------------|----------------------------|----------------------------|----------|----------|-----------------|
| NZO                          |          | 3.7400e-<br>003 | 0.0468                     | 0.0000                     | 0.0000   | 0.0755   | 0.1260          |
| CH4                          | MT/yr    | 0.0201          | 0.1303                     | 0.3407                     | 12.2811  | 3.0183   | 15.7904         |
| Total CO2                    | IM       | 220.9670        | 3,896.073 3,896.073<br>2 2 | 7,620.498<br>6             | 207.8079 | 585.8052 | 12,531.15<br>19 |
| Bio- CO2 NBio- CO2 Total CO2 |          | 220.9670        | 3,896.073<br>2             | 7,620.498 7,620.498<br>6 6 | 0.0000   | 556.6420 | 12,294.18<br>07 |
| Bio-CO2                      |          | 0.0000          | 0.0000                     | 0.0000                     | 207.8079 | 29.1632  | 236.9712        |
| PM2.5<br>Total               |          | 0.0714          | 0.0966                     | 2.1434                     | 0.000.0  | 0.0000   | 2.3114          |
| Exhaust<br>PM2.5             |          | 0.0714          | 9960.0                     | 0.0539                     | 0.000.0  | 0.0000   | 0.2219          |
| Fugitive<br>PM2.5            |          |                 |                            | 2.0895                     |          |          | 2.0895          |
| PM10<br>Total                |          | 0.0714          | 9960.0                     | 7.8559                     | 0.0000   | 0.0000   | 8.0240          |
| Exhaust<br>PM10              | síyr     | 0.0714          | 0.0966                     | 0.0580                     | 0.0000   | 0.0000   | 0.2260          |
| Fugitive<br>PM10             | tons/yr  |                 |                            | 7.7979                     |          |          | 7.7979          |
| S02                          |          | 1.6700e-<br>003 | 7.6200e-<br>003            | 0.0821                     |          |          | 0.0914          |
| ဝ၁                           |          | 0.2950 10.3804  | 0.7770                     | 19.1834                    |          |          | 30.3407         |
| XON                          |          | 0.2950          | 1.2312                     | 7.9962                     |          |          | 9.5223          |
| ROG                          |          | 5.1437          | 0.1398                     | 1.5857                     |          |          | 6.8692          |
|                              | Category | Area            | Energy                     | Mobile                     | Waste    | Water    | Total           |

CO2e

N20

CH4

Bio- CO2 NBio-CO2 Total CO2

PM2.5 Total

Exhaust PM2.5

Fugitive PM2.5

PM10 Total

Exhaust PM10

Fugitive PM10

802

တ

NOX

ROG

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

Percent Reduction

### 3.0 Construction Detail

### **Construction Phase**

Page 8 of 44

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

| Phase<br>Vumber | Phase Name            | Phase Type            | Start Date | End Date Num Days Num Days Week | Num Days<br>Week | Num Days | Phase Description |
|-----------------|-----------------------|-----------------------|------------|---------------------------------|------------------|----------|-------------------|
|                 | Demolition            |                       |            | 10/12/2021                      | 5                | 30       |                   |
| · · · ·         | Site Preparation      | Site Preparation      |            | 11/9/2021                       | 5                | 20       |                   |
|                 | Grading               | Grading               | 11/10/2021 | 1/11/2022                       | 5                | 45       |                   |
|                 | Building Construction | Building Construction |            | 12/12/2023                      | 5                | 200      |                   |
|                 | Paving                | Paving                | 8          | 1/30/2024                       | 5                | 35       |                   |
|                 | Architectural Coating | Architectural Coating | 1/31/2024  | 3/19/2024                       | 5.               | 35       |                   |
|                 |                       |                       |            |                                 |                  |          |                   |

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

| Phase Name            | Offroad Equipment Type    | Amount | Usage Hours | Horse Power | Load Factor |
|-----------------------|---------------------------|--------|-------------|-------------|-------------|
| Demolition            | Concrete/Industrial Saws  | _      | 8.00        | 81          | 0.73        |
| Demolition            | Excavators                | (C)    | 8.00        | 158         | 0.38        |
| Demolition            | Rubber Tired Dozers       | 2      | 8.00        | 247         | 0.40        |
| Site Preparation      | Rubber Tired Dozers       | n      | 8.00        | 247         | 0.40        |
| Site Preparation      | Tractors/Loaders/Backhoes | 4      | 8.00        | 97          | 0.37        |
| Grading               | Excavators                | 2      | 8.00        | 158         | 0.38        |
| Grading               | Graders                   |        | 8.00        | 187         | 0.41        |
| Grading               | Rubber Tired Dozers       |        | 8.00        | 247         | 0.40        |
| Grading               | Scrapers                  | 2      | 8.00        | 367         | 0.48        |
| Grading               | Tractors/Loaders/Backhoes | 2      | 8.00        | 97          | 0.37        |
| Building Construction | Cranes                    |        | 7.00        | 231         | 0.29        |
| Building Construction | Forklifts                 | ε<br>Ε | 8.00        | 89          | 0.20        |
| Building Construction | Generator Sets            |        | 8.00        | 84          | 0.74        |
| Building Construction | Tractors/Loaders/Backhoes | r<br>r | 7.00        | 97          | 0.37        |
| Building Construction | Welders                   |        | 8.00        | 46          | 0.45        |
| Paving                | Pavers                    | 2      | 8.00        | 130         | 0.42        |
| Paving                | Paving Equipment          | 2      | 8.00        | 132         | 0.36        |
| Paving                | Rollers                   | 2      | 8.00        | 80          | 0.38        |
| Architectural Coating | Air Compressors           | 1      | 6.00        | 78          | 0.48        |
|                       |                           |        |             |             |             |

**Trips and VMT** 

16.3.2 Page 10 of 44 Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/12/2021 2:26 PM

| Phase Name            | Phase Name Offroad Equipment Worker Trip Count Number | Worker Trip<br>Number | Vendor Trip<br>Number | Hauling Trip<br>Number | Worker Trip<br>Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Hauling Trip Worker Trip Vendor Trip Hauling Trip Worker Vehicle Vendor Hauling Number Length Length Class Vehicle Class | Vendor<br>Vehide Class | Hauling<br>Vehicle Class |
|-----------------------|-------------------------------------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|
| Demolition            | 9                                                     | 15.00                 | 00.00                 | 458.00                 | 10.00                 | 06.9                  | 다.<br>다.<br>단.         | 20.00 LD_Mix                                                                                                             | HDT_Mix                | ННОТ                     |
| Site Preparation      |                                                       | 18.00                 | 00.00                 | 0                      | 10.00                 | 6.90                  |                        | 20.00 LD_Mix                                                                                                             | HDT_Mix                | HHDT                     |
| Grading               | 80                                                    | 20.00                 | 0.00                  | 0.00                   | 10.00                 | 6.90                  |                        | ×                                                                                                                        | HDT_Mix                | HHDT                     |
| Building Construction | 0                                                     | 801.00                | 143.00                | 0.00                   | 10.00                 | 9.90                  |                        | 20.00 LD_Mix                                                                                                             | HDT_Mix                | HHDT                     |
| Paving                | 9                                                     | 15.00                 | 0.00                  | 0.00                   | 10.00                 | 06.9                  | !<br>!<br>!<br>!       | 20.00 LD_Mix                                                                                                             | HDT_Mix                | HHDT                     |
| Architectural Coating |                                                       | 160.00                | 00.0                  | 0.00                   | 10.00                 | 96.90                 |                        | 20.00 LD_Mix                                                                                                             | HDT_Mix                | HHDT                     |

# 3.1 Mitigation Measures Construction

3.2 Demolition - 2021

| C02e                             |          | 0.0000                      | 51.3601                            | 51.3601                       |
|----------------------------------|----------|-----------------------------|------------------------------------|-------------------------------|
| N2O CO2e                         |          | 0.0000                      | 0.0000                             | 0.000                         |
| Bio- CO2 NBio- CO2 Total CO2 CH4 | ,<br>V   | 0.0000 0.0000 0.0000 0.0000 | 51.0012 0.0144 0.0000              | 0.0144                        |
| Total CO2                        | TW       | 0.0000                      | 51.0012                            | 51.0012                       |
| NBio-CO2                         |          | 0.0000                      | 51.0012                            | 51.0012                       |
| Bio- CO2                         |          | 0.0000                      | 0.0000                             | 0.000                         |
| PM2:5<br>Total                   |          | 0.0000 7.5100e-             | 0.0216                             | 0.0291                        |
| Exhaust<br>PM2.5                 |          | 0.000.0                     | 0.0216                             | 0.0216                        |
| Fugitive<br>PM2.5                |          | 0.0000 0.0496 7.5100e-      | <br> <br> <br> <br> <br> <br> <br> | 0.0729 7.5100e-<br>003        |
| PM10<br>Total                    |          | 0.0496                      | 0.0233                             | 0.0729                        |
| Exhaust<br>PM10                  | ıkys     | 0.000.0                     | 0.0233                             | 0.0233                        |
| Fugitive<br>PM10                 | tons/yr  | 0.0496                      |                                    | 0.0496                        |
| S02                              |          |                             | 5.8000e-<br>004                    | 5.8000e-<br>004               |
| 8                                |          |                             | 0.3235 5.8000e-<br>004             | 0.3235                        |
| NOX                              |          |                             | 0.4716                             | 0.0475 0.4716 0.3235 5.8000e- |
| ROG                              |          |                             | 0.0475                             | 0.0475                        |
|                                  | Category | Fugitive Dust               | Off-Road                           | Total                         |

Page 11 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021

## Unmitigated Construction Off-Site

| C02e                             |          | 17.4869                                     | 0.0000  | 1.5293                      | 19.0161                |
|----------------------------------|----------|---------------------------------------------|---------|-----------------------------|------------------------|
| NZO                              |          | 0.0000                                      | 0.0000  | 0.0000                      | 0.0000                 |
| СН4                              | MTlyr    | 1.2100 <del>c.</del><br>003                 | 0.0000  | 5.0000e-<br>005             | 1.2600e-<br>003        |
| Total CO2                        | _MT      | 17.4566                                     | 0.0000  | 1.5281                      | 18.9847                |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.0000 17.4566 17.4566 1.2100e-             | 0.000.0 | 1.5281                      | 18.9847                |
| Bio-co2                          |          | 0.0000                                      | 0.0000  | 0.0000                      | 0.000.0                |
| PM2.5<br>Total                   |          | 1.2600e- (<br>003                           | 0.0000  | 4.6000e-<br>004             | 1.7200e-<br>003        |
| Exhaust<br>PM2.5                 |          | 1,9000e- 4,1300e- 1,0800e- 1,8000e- 004 004 | 0.0000  | 1.0000e-<br>005             | 1.9000e-<br>004        |
| Fugitive<br>PM2.5                |          | 1.0800e-<br>003                             | 0.0000  | - 4.5000e-<br>004           | 1.5300e-<br>003        |
| PM10<br>Total                    |          | 4.1300e-<br>003                             | 0.000.0 | 1.6900 <del>e-</del><br>003 | 5.8200e-<br>003        |
| Exhaust<br>PM10                  | tons/yr  | 1.9000e-<br>004                             | 0.000.0 | 1.0000e-<br>005             | 2.0000e-<br>004        |
| Fugitive<br>PM10                 | ton      | 3.9400e-<br>003                             | 0.0000  | 1.6800 <del>c</del><br>003  | 5.6200e-<br>003        |
| SO2                              |          | 1.8000e-<br>004                             | 0.000.0 | e- 2.0000e-<br>005          | 2.0000e-<br>004        |
| NOX CO                           |          | 0.0148                                      | 0.0000  | 0e- 6.0900e- 2<br>1 003     | 0.0209 2.0000e-<br>004 |
| NOX                              |          | 1.9300e- 0.0634 0.0148 1.8000e-<br>003 004  | 0.00    | 300 <del>6-</del><br>104    | 629                    |
| RoG                              |          | 1.9300e-<br>003                             | 0.0000  | 7.2000e-<br>004             | 2.6500e- 0.0<br>003    |
|                                  | Category | Hauling                                     | Vendor  | Worker                      | Fotal                  |

| C02e                             |          | 0.0000                                     | 51.3600                       | 51.3600                       |
|----------------------------------|----------|--------------------------------------------|-------------------------------|-------------------------------|
| NZO                              |          | 0.0000                                     | 0.0000                        | 0.0000                        |
| CH4                              | МТ/уг    | 0.0000                                     | 0.0144                        | 0.0144                        |
| Total CO2                        | MT       | 0.000.0                                    | 51.0011 51.0011 0.0144        | 51.0011                       |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.0000 0.0000 0.0000 0.0000 0.0000         | 51.0011                       | 0.0000 51.0011 51.0011 0.0144 |
| Bio- CO2                         |          | 0.0000                                     | 0.0000                        | 0.0000                        |
| PM2.5<br>Fotal                   |          | 7.5100 <del>c.</del><br>003                | 0.0216                        | 0.0291                        |
| Exhaust<br>PM2.5                 |          | 0.0496 7.5100e- 0.0000 7.5100e-<br>003 003 | 0.0216                        | 0.0216                        |
| Fugitive<br>PM2.5                |          | 7.5100e-<br>003                            |                               | 7.5100e- 0.<br>003            |
| PM10<br>Total                    |          | 0.0496                                     | 0.0233                        | 0.0729                        |
| Exhaust<br>PM10                  | tons/yr  | 0.0000                                     | 0.0233                        | 0.0233                        |
| Fugitive<br>PM10                 | щ        | 0.0496                                     |                               | 0.0496                        |
| S02                              |          |                                            | 5.8000e-<br>004               | 5.8000e- 0.0496<br>004        |
| 00                               |          |                                            | 0.3235                        | 0.3235                        |
| NOx CO.                          |          |                                            | 0.4716 0.3235 5.8000e-<br>004 | 0.0475 0.4716                 |
| ROG                              |          |                                            | 0.0475                        | 0.0475                        |
|                                  | Category | Fugitive Dust                              | Off-Road                      | Total                         |

# Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.2 Demolition - 2021

### Mitigated Construction Off-Site

| CO2e                             |          | 17.4869                      | 0.0000  | 1.5293                                      | 19.0161                |
|----------------------------------|----------|------------------------------|---------|---------------------------------------------|------------------------|
| N2O                              |          | 0.0000                       | 0.0000  | 0.0000                                      | 0.000                  |
| CH4                              | ريد<br>م | 1.2100e-<br>003              | 0.0000  | 5.0000e-<br>005                             | 1.2600e-<br>003        |
| Total CO2                        | WT/V     | 17.4566 1.2100e-<br>003      | 0.0000  | 1.5281                                      | 18.9847                |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 17.4566                      | 0.0000  | 1.5281                                      | 18.9847                |
| Bio- CO2                         |          | 0000                         | 0.0000  | 0.0000                                      | 0.0000                 |
| PM2.5.<br>Total                  |          | 1.2600e- 0<br>003            | 0.0000  | 4.6000e-<br>004                             | 1.7200e-<br>003        |
| Exhaust<br>PM2.5                 |          | 1.0800e- 1.8000e-<br>003 004 | 0.0000  | 1.0000e-<br>005                             | 1.9000e-<br>004        |
| Fugitive<br>PM2.5                |          | 1.0800e-<br>003              | 0.0000  | 4.5000e<br>004                              | 1.5300e-<br>003        |
| PM10<br>Total                    |          | 4.1300e-<br>003              | 0.0000  | 1.6900e-<br>003                             | 5.8200e-<br>003        |
| Exhaust<br>PM10                  | síyr     | 1.9000e- 4.1300e-<br>004 003 | 0.0000  | 1.0000e-<br>005                             | 2.0000e-<br>004        |
| Fugitive<br>PM10                 | tons/yr  | 9400e-<br>003                | 0.000.0 | 1.6800e-<br>003                             | 5.6200e-<br>003        |
| S02                              |          | 1.8000e-<br>004              | 0.000.0 | )e- 2.0000e-<br>005                         | 2.0000e-<br>004        |
| ROG NOx CO                       |          | 0.0148                       | 0.000   | 7.2000e- 15.3000e- 16.0900e-<br>004 004 003 | 0.0209 2.0000e-<br>004 |
| XON<br>V                         |          | 0.0634                       | 0.0000  | 5.3000e-<br>004                             | 0.0639                 |
| ROG                              |          | 1.9300e-<br>003              | 0.0000  | 7.2000e-<br>004                             | 2.6500e-<br>003        |
|                                  | Category | Hauling                      | Vendor  | Worker                                      | Total                  |

### 3.3 Site Preparation - 2021

| CO2e                                                  |          | 0.0000                                    | 33.7061                       | 33.7061                       |
|-------------------------------------------------------|----------|-------------------------------------------|-------------------------------|-------------------------------|
| NZO                                                   |          | 0.0000                                    | 0.0000                        | 0.0000                        |
| CH4                                                   | Į.       | 0.0000                                    | 0.0108                        | 0.0108                        |
| Total CO2                                             | MT/yr    | 0.0000                                    | 33.4357 0.0108                | 33.4357                       |
| NBio-CO2                                              |          | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 33.4357                       | 0.0000 33.4357                |
| Bio-CO2                                               |          | 0.000.0                                   | 0.0000                        | 0.0000                        |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total          |          | 0.0993                                    | 0.0188                        | 0.1181                        |
|                                                       |          | 0.0000                                    | 0.0188                        | 0.0188                        |
| Fugitive<br>PM2.5                                     |          | 0.0993                                    | <br> <br>                     | 0.0993                        |
| PM10<br>Total                                         |          | 0.1807                                    | 0.0204                        | 0.2011                        |
| grifive Exhaust PM10 Fugitive Exhaust M10 PM2.5 PM2.5 | tons/yr  | 0.0000                                    | 0.0204                        | 0.0204                        |
| Fugitive<br>PM10                                      | (ou      | 0.1807                                    |                               | 0.1807                        |
| SO2 Fug                                               |          |                                           | 3.8000e-<br>004               | 0.0389 0.4050 0.2115 3.8000e- |
| <b>0</b> 0                                            |          |                                           | 0.2115                        | 0.2115                        |
| ROG NOX CO                                            |          |                                           | 0.4050                        | 0.4050                        |
| ROG                                                   |          |                                           | 0.0389 0.4050 0.2115 3.8000e- | 0.0389                        |
|                                                       | Category | Fugitive Dust                             | Off-Road                      | Total                         |

Date: 1/12/2021 2:26 PM Page 13 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.3 Site Preparation - 2021
Unmitigated Construction Off-Site

|                              |          |                      | _             |                                       |                                                 |
|------------------------------|----------|----------------------|---------------|---------------------------------------|-------------------------------------------------|
| CO2e                         |          | 0.0000               | 0.0000        | 1.2234                                | 1.2234                                          |
| CH4 N20                      |          | 0.000                | 0.0000        | 0.0000                                | 0.0000                                          |
|                              | ίγι      | 0.000.0              | 0.0000        | 4.0000e-<br>005                       | 5 4.0000e-<br>005                               |
| Total CO2                    | MT/yr    | 0.0000               | 0.0000        | 1.2225                                | 1.2225                                          |
| NBio-CO2                     |          | 0.0000               | 0.0000        | 1.2225                                | 1.2225                                          |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000               | 0.0000        | 0.0000                                | 0.000                                           |
| PM2.5<br>Total               |          | 0.000.0              | 0.000.0       | 3.7000e-<br>004                       | 3.7000e-<br>004                                 |
| Exhaust<br>PM2.5             |          | 0.0000 0.0000        | 0.0000        | 1.0000e-<br>005                       | 1.0000e-<br>005                                 |
| Fugitive<br>PM2.5            |          |                      | 0.000.0       | 3.6000e-<br>004                       | 000e-<br>004                                    |
| PM10<br>Total                |          | 0.000 0.0000         | 0.0000        | 1.3500e- 3.<br>003                    | 1.3500<br>003                                   |
| Exhaust<br>PM10              | síyr     | 0.000.0              | 0.000.0       | 1.0000e-<br>005                       | 1.0000e-<br>005                                 |
| Fugitive<br>PM10             | tons/yr  | 0.0000               | 0.0000        | 1.3400e-<br>003                       | 1.3400e-<br>003                                 |
| S02                          |          | 0.000.0              | 0.0000        | )e- 1.0000e- 1.<br>005                | 1.0000e-<br>005                                 |
| .co soz                      |          | 0.000.0              | 0.0000        | 4.8700e-<br>003                       | 4.8700e-<br>003                                 |
| XON                          |          | 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 5.8000e- 4.3000e- 4.8700e-<br>004 003 | 5.8000e- 4.3000e- 4.8700e- 1.0000e- 004 004 005 |
| ROG                          |          | 0.000                | 0.0000        | 5.8000e-<br>004                       | 5.8000e-<br>004                                 |
|                              | Category | Hauling              | Vendor        | Worker                                | Total                                           |

| Fugitive    | 0.1807 0.0000 0.1807 0.0993 0.0000 0.0993 0.0000 0.0000 | 0.0204 0.0204 0.0188 0.0188 0.0000 33.4357 33.4357 0.0108 0.0000 33.7060 | - 0.1807 0.0204 0.2011 0.0993 0.0188 0.1181 0.0000 33.4357 33.4357 0.0108 0.0000 33.7060 |
|-------------|---------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Total PM2.5 | 0 0.1807 0.0993 (                                       | 0.0204                                                                   | 0.2011 0.0993                                                                            |
| 2 4 §       | 0.1807 0.0000                                           |                                                                          | 0.1807                                                                                   |
| O3<br>XO2   |                                                         | 0.0389 0.4050 0.2115 3.8000e-                                            | 0.4050 0.2115 3.8000e-                                                                   |
| ROG         | Fugitive Dust                                           | Off-Road 0.0389                                                          | Total 0.0389                                                                             |

Date: 1/12/2021 2:26 PM Page 14 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.3 Site Preparation - 2021
Mitigated Construction Off-Site

| C02e                                    |                  | 0.0000               | 0.0000        | 1.2234                                    | 1.2234                                      |
|-----------------------------------------|------------------|----------------------|---------------|-------------------------------------------|---------------------------------------------|
| NZO                                     |                  | 0.0000               | 0.0000        | 0.0000                                    | 0.0000                                      |
| CH4                                     | <b>3</b> 6       | 0.000.0              | 0.0000        | 4.0000e-<br>005                           | 4.0000e-<br>005                             |
| Total CO2                               | IM               | 0.0000               | 0.0000        | 1.2225                                    | 1.2225                                      |
| NBio- CO2                               |                  | 0.000.0              | 0.000.0       | 1.2225                                    | 1.2225                                      |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4. |                  | 0.000.0              | 0.0000        | 0.0000                                    | 0.0000                                      |
| PM2.5<br>Total                          |                  | 0.000.0              | 0.000.0       | 3.7000e-<br>004                           | 3.7000e-<br>004                             |
| Exhaust<br>PM2.5                        |                  | 0.0000               | 0.0000        | 1.0000e-<br>005                           | 1.0000e-<br>005                             |
| Fugitive Exhaust<br>PM2.5 PM2.5         |                  | 0.0000               | 0.000.0       | 3.6000e-<br>004                           | 3000e-<br>004                               |
| PM10<br>Total                           |                  | 0.0000               | 0.0000        | 1.3500e-<br>003                           | 1.3500e- 3.6<br>003                         |
| Exhaust<br>PM10                         | tons <i>k</i> yr | 00000 0.0000 0.0000. | 0.0000        | 1.0000e-<br>005                           | 1.0000e-<br>005                             |
| Fugitive<br>PM10                        | ton              |                      | 0.0000        | 1.3400 <del>e-</del><br>003               | 1.3400e-<br>003                             |
| S02                                     |                  | 0.000.0              | 0.000.0       | . 1.0000 <del>e-</del> 1.3<br>005         | 1.0000e-<br>005                             |
| တ                                       |                  | 0.0000               | 0.0000        | 4.8700e-<br>003                           | 4.8700e-<br>003                             |
| ROG NOX CO SOZ                          |                  | 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 5.8000e- 4.3000e- 4.8700e-<br>004 004 003 | 5.8000e- 4.3000e- 4.8700e- 1.0000e- 004 003 |
| ROG                                     |                  | 0.0000               | 0.0000        | 5.8000e-<br>004                           | 5.8000e-<br>004                             |
|                                         | Category         | Hauling              | Vendor        | Worker                                    | Total                                       |

3.4 Grading - 2021

| Partuses                                        | Filosopo a | 1                                         | ,                             | T                        |
|-------------------------------------------------|------------|-------------------------------------------|-------------------------------|--------------------------|
| CO2e                                            |            | 0.0000                                    | 104.3776                      | 104.3776                 |
| OZN                                             |            | 0.0000                                    | 0.0000 104.3776               | 0.0000 104.3776          |
| _ CH4                                           | MTAyr      | 0.0000                                    | 0.0335                        | 0.0335                   |
| Total CO2                                       | TM.        | 0.000.0                                   | 103.5405                      | 103.5405                 |
| NBio-CO2                                        |            | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 103.5405 103.5405             | 103.5405 103.5405 0.0335 |
| Bio-CO2 NBio-CO2 Total CO2 CH4                  |            | 0.000.0                                   | 0.000.0                       | 0.0000                   |
|                                                 |            | 0.0693                                    | 0.0347                        | 0.1040                   |
| Fugitive Exhaust PM2.5 PM2.5 Total              |            | 0.0000                                    | 0.0347                        | 0.0347                   |
| Fugitive<br>PM2.5                               |            | 0.0693                                    | <br> <br> <br> <br> <br> <br> | 0.0693                   |
|                                                 |            | 0.1741                                    | 0.0377                        | 0.2118                   |
| Exhaust<br>PM10                                 | tons/yr    | 0.1741 0.0000 0.1741 0.0693               | 0.0377                        | 0.0377                   |
| Fugitive<br>PM10                                | lon        |                                           |                               | 0.1741                   |
| S02                                             |            |                                           | 1.1800e-<br>003               | 1.1800e-<br>003          |
| . co                                            |            |                                           | 0.5867                        | 0.5867                   |
| ROG NOX CO SO2 Fugitive Exhaust PM10 PM10 Total |            |                                           | 0.8816                        | 0.8816 0.5867 1.1800e-   |
| ROG                                             |            |                                           | 0.0796 0.8816 0.5867 1.1800e- | 9620.0                   |
|                                                 | Category   | Fugitive Dust                             | Off-Road                      | Total                    |

Date: 1/12/2021 2:26 PM Page 15 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2021 Unmitigated Construction Off-Site

| V. 1874                          | Part Service | r                    | :      |                              |                     |
|----------------------------------|--------------|----------------------|--------|------------------------------|---------------------|
| COZe                             |              | 0.0000               | 0.0000 | 2.5828                       | 2.5828              |
| NZO                              |              | 0.0000               | 0.0000 | 0.0000                       | 0.0000              |
| CH4                              | J.G.         | 0.0000               | 0.0000 | 8.0000e-<br>005              | 8.0000e-<br>005     |
| Total CO2                        | M .          | 0.000 0.0000 0.0000  | 0.0000 | 2.5808                       | 2.5808              |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |              | 0.0000               | 0.0000 | 2.5808                       | 2.5808              |
| Bio-CO2                          |              | 0.000.0              | 0.0000 | 0.0000                       | 0.0000              |
| PM2.5<br>Total                   |              | 0.000.0              | 0.0000 | 7.8000e-<br>004              | 7.8000e-<br>004     |
| Exhaust<br>PM2.5                 |              | 0.0000 0.0000 0.0000 | 0.000  | 0000e-<br>005                | 2.0000e-<br>005     |
| Fugitive<br>PM2.5                |              | 0.0000               | 0.0000 | 7.5000e- 2.<br>004           | 7.5000e-<br>004     |
| PM10<br>Total                    |              | 0.0000               | 0.0000 | 3600e-<br>003                | 1600e-<br>003       |
| Exhaust<br>PM10                  | sityr        | 0.0000               | 0.0000 | 2.0000e-<br>005              | 2.0000e-<br>005     |
| Fugitive<br>PM10                 | tons/y       | 0.000.0              | 0.0000 | 300e-<br>303                 | 2.8300e-<br>003     |
| 205                              |              | 0.0000               | 0.0000 | 3 3.0000e- 2.8<br>005 (      | 3.0000e-<br>005     |
| NOX CO                           |              | 0.0000               | 0.000  | 0.010                        | 0.0103              |
| NOX                              |              | 0.0000 0.0000 0.0000 | 0.0000 | 1.2200e- 9.0000e-<br>003 004 | 9.0000e-<br>004     |
| ROG                              |              | 0.0000               | 0.0000 | 1.2200e-<br>003              | 1.2200e-<br>903 004 |
|                                  | Category     | Hauling              | Vendor | Worker                       | Total               |

|                                           | Control of |                                                                                   |                                                 | <del>,</del>             |
|-------------------------------------------|------------|-----------------------------------------------------------------------------------|-------------------------------------------------|--------------------------|
| C02e                                      |            | 0.0000                                                                            | 104.3775                                        | 104.3775                 |
| NZO                                       |            | 0.0000                                                                            | 0.0000                                          | 0.0000                   |
| CH4                                       | s.         | 0.0000                                                                            | 0.0335                                          | 0.0335 0.0000 104.3775   |
| Total CO2                                 | MT/yr      | 0.000.0                                                                           | 103.5403                                        | 103.5403                 |
| Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e |            | 0.000.0                                                                           | 0.0000 103.5403 103.5403 0.0335 0.0000 104.3775 | 0.0000 103.5403 103.5403 |
| Вю- со2                                   |            | 0.000.0                                                                           | 0.0000                                          | 0.0000                   |
| PM2.5 E<br>Total                          |            | 690.0                                                                             | 0.0347                                          | 0.1040                   |
| Exhaust<br>PM2.5                          |            | 1741 0.0000 0.1741 0.0693 0.0000 0.0693 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0347                                          | 0.0347                   |
| Fugitive<br>PM2.5                         |            | 0.0693                                                                            |                                                 | 0.0693                   |
| PM10<br>Total                             |            | 0.1741                                                                            | 0.0377                                          | 0.2118                   |
| Exhaust<br>PM10                           | síyr       | 0.0000                                                                            | 0.0377                                          | 0.0377                   |
| Fugitive<br>:PM10                         | tons/yr    | 0.1741                                                                            |                                                 | 0.1741                   |
| S02                                       |            |                                                                                   | 1.1800e-<br>003                                 | 1.1800e-<br>003          |
| Nox co                                    |            |                                                                                   | 0.5867                                          | 0.5867                   |
|                                           |            |                                                                                   | 0.8816                                          | 0.8816 0.5867            |
| ROG                                       |            |                                                                                   | 0.0796                                          | 0.0796                   |
|                                           | Category   | Fugitive Dust                                                                     | Off-Road                                        | Total                    |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/12/2021 2:26 PM

3.4 Grading - 2021
Mitigated Construction Off-Site

|                                 |          |                      |              |                                | -                      |
|---------------------------------|----------|----------------------|--------------|--------------------------------|------------------------|
| N2O C02e                        |          | 0.0000               | 0.0000       | 2.5828                         | 2.5828                 |
| 1000                            |          | 0.0000               | 0.0000       | 0.0000                         | 0.000                  |
| CH4                             | λλε      | 0.0000 0.0000        | 0.0000       | 8.0000e-<br>005                | 8.0000e-<br>005        |
| Total CO2                       | EW.      | 0.000                | 0.0000       | 2.5808                         | 2.5808                 |
| Bio-CO2 NBio-CO2 Total CO2 CH4. |          | 0.0000 0.0000        | 0.0000       | 2.5808                         | 2.5808                 |
|                                 |          | 0.0000               | 0.0000       | 0.0000                         | 0.0000                 |
| PM2.5<br>Total                  |          | 0.0000               | 0.000.0      | 7.8000e-<br>004                | e- 7.8000e-<br>004     |
| Exhaust<br>PM2.5                |          | 0.0000               | 0.000.0      | 2.0000e-<br>005                | 2.0000<br>005          |
| Fugitive<br>PM2.5               |          | 0.000                | 0.0000       | 7.5000e-<br>004                | 7.5000e-<br>004        |
| PM10<br>Total                   |          | 0.0000               | 0.0000       | 2.8600 <del>c.</del> 7.<br>003 | 2.8600e-<br>003        |
| Exhaust<br>PM10                 | tons/yr  | 0.0000 0.0000        | 0.0000       | 2.0000e-<br>005                | 2.0000                 |
| Fugitive<br>PM10                | ton      | 0.0000               | 0.0000       | 2.8300e-<br>003                | 2.8300e-<br>003        |
| S02                             |          | 0.0000               | 0.0000       | 33 3.0000e- 2<br>005           | 0.0103 3.0000e-<br>005 |
| 00                              |          | 0.0000               | 0.00         | 0.01                           | 0.0103                 |
| NOx                             |          | 0.0000 0.0000 0.0000 | 0.000 0.0000 | 1.2200e- 9.0000e-<br>003 004   | 1.2200e-<br>003 004    |
| ROG                             |          | 0.0000               | 0.0000       | 1.2200e-<br>003                | 1.2200e-<br>003        |
|                                 | Category | Hauling              | Vendor       | Worker                         | Total                  |

3.4 Grading - 2022

| CO2e                                    |          | 0.0000                      | 19.2414                       | 19.2414                  |
|-----------------------------------------|----------|-----------------------------|-------------------------------|--------------------------|
| N20                                     |          | 0.0000                      | 0.0000                        | 0.0000                   |
| CH4                                     | ¥        | 0.0000 0.0000               | 6.1700e 0.0                   | 6.1700e-<br>003          |
| Total CO2                               | TM.      | 0.0000                      | 19.0871                       | 19.0871                  |
| NBio- CO2                               |          | 0.0000                      | 19.0871 19.0871               | 19.0871 19.0871 6.1700e- |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e |          | 0.000.0                     | 0.000.0                       | 0.0000                   |
| it PM2.5<br>Total                       |          | 0.0180                      | 5.2600e-                      | 0.0233                   |
| Fugitive Exhaust<br>PM2.5 PM2.5         |          | 0.0000                      | 5.2600e- 5.2600e-<br>003 003  | 5.2600e- 0<br>003        |
| Fugitive<br>PM2.5                       |          | 0.0000 0.0807 0.0180 0.0000 | <br> <br> <br> <br> <br>      | 0.0180                   |
| PM10<br>Total                           |          | 0.0807                      | 5.7200e-<br>003               | 0.0865                   |
| Exhaust<br>PM10                         | síyr     | 0.000.0                     | 5.7200e-<br>003               | 5.7200e- 0<br>003        |
| Fugitive<br>PM10                        | tons/v   | 0.0807                      |                               | 0.0807                   |
| S02                                     |          |                             | 2.2000e-<br>004               | 0.1017 2.2000e-<br>004   |
| ဝ                                       |          |                             | 0.1017                        | 0.1017                   |
| NOX                                     |          |                             | 0.1360                        | 0.1360                   |
| ROG                                     |          |                             | 0.0127 0.1360 0.1017 2.2000e- | 0.0127                   |
|                                         | Category | Fugitive Dust               | Off-Road                      | Total                    |

Date: 1/12/2021 2:26 PM Page 17 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2022
Unmitigated Construction Off-Site

| CO2e                         |          | 0.0000               | 0.0000        | 0.4590                                             | 0.4590                                      |
|------------------------------|----------|----------------------|---------------|----------------------------------------------------|---------------------------------------------|
| NZO                          |          | 0.0000               | 0.0000        | 0.0000                                             | 0.0000                                      |
| CH4                          | WIT/yr   | 0.000                | 0.0000        | 1.0000e-<br>005                                    | 1.0000e-<br>005                             |
| Total CO2                    | <u>M</u> | 0.0000 0.0000        | 0.0000        | 0.4587                                             | 0.4587                                      |
| Bio-CO2 NBio-CO2 Total CO2   |          | 0.000.0              | 0.0000        | 0.4587                                             | 0.4587                                      |
| Bio-CO2                      |          | 0.000.0              | 0.000.0       | 0.000                                              | 0.000                                       |
| PM2.5<br>Total               |          | 0.000.0              | 0.0000        | 1.4000e-<br>004                                    | 1.4000e-<br>004                             |
| Exhaust<br>PM2.5             |          | 0.0000 0.0000 0.0000 | 0.0000        | 0.0000                                             | 0.0000                                      |
| PM10 Fugitive<br>Total PM2.5 |          | 0.000.0              | 0.000.0       | 1.4000e-<br>004                                    | 1.4000e- 0<br>004                           |
| 10.200                       |          | 0.0000               | 0.0000        | 5.3000e-<br>004                                    | 0 5.3000e-<br>004                           |
| Exhaust<br>PM10              | s/yr     | 0.0000               | 0.0000        | 0.0000                                             | 0.0000                                      |
| Fugitive<br>PM10             | tons/yr  | 0.0000               | 0.0000        | 5.2000e-<br>004                                    | 5.2000e-<br>004                             |
| S02                          |          | 0.0000               | 0.0000        | 1.0000e-<br>005                                    | 1.0000e-<br>005                             |
| 00                           |          | 0.0000               | 0.0000        | 1.7400e-<br>003                                    | 1.7400e-<br>003                             |
| NOx CO SO2                   |          | 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 2.1000e- 1.5000e- 1.7400e- 1.0000e-<br>004 004 005 | 2.1000e- 1.5000e- 1.7400e- 1.0000e- 004 005 |
| ROG                          |          | 0.0000               | 0.0000        | 2.1000e-<br>004                                    | 2.1000e-<br>004                             |
|                              | Category | Hauling              | Vendor        | Worker                                             | Total                                       |

| CO2e                           |          | 0.0000                                    | 19.2414                       | 19.2414                       |
|--------------------------------|----------|-------------------------------------------|-------------------------------|-------------------------------|
| N20                            |          | 0.0000                                    | 0.0000                        | 0.0000                        |
| CH4                            | JA,      | 0.0000                                    | 6.1700e-<br>003               | 6.1700e-<br>003               |
| Total CO2                      | MITAY    | 0.0000                                    | 19.0871                       | 19.0871                       |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.0000 0.0000 0.0000 0.0000 0.0000        | 19.0871                       | 0.0000 19.0871                |
| Bio-CO2                        |          | 0.000.0                                   | 0.0000                        | 0.0000                        |
| PM2.5<br>Total                 |          | 0.0180                                    | 5.2600e-<br>003               | 0.0233                        |
| Exhaust<br>PM2.5               |          | 0.0807 0.0000 0.0807 0.0180 0.0000 0.0180 | 5.2600e- 6<br>003             | 5.2600e-<br>003               |
| Fugitive<br>PM2.5              |          | 0.0180                                    |                               | 0.0180                        |
| PM10<br>Total                  |          | 0.0807                                    | - 5.7200e-<br>003             | 0.0865                        |
| Exhaust<br>PM10                | s/yr     | 0.0000                                    | 5.7200e-<br>003               | 5.7200e-<br>003               |
| Fugitive<br>PM10               | tons/yr  |                                           |                               | 0.0807                        |
| S02                            |          |                                           | 2.2000e-<br>004               | 2.2000e-<br>004               |
| NOx CO                         |          |                                           | 0.1017                        | 0.1017                        |
| 140000                         |          |                                           | 0.0127 0.1360 0.1017 2.2000e- | 0.0127 0.1360 0.1017 2.2000e- |
| ROG                            |          |                                           | 0.0127                        | 0.0127                        |
|                                | Category | Fugitive Dust                             | Off-Road                      | Total                         |

Date: 1/12/2021 2:26 PM Page 18 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.4 Grading - 2022

Mitigated Construction Off-Site

| CO2e                             |          | 0.0000               | 0.0000        | 0.4590                                                 | 0.4590                                          |
|----------------------------------|----------|----------------------|---------------|--------------------------------------------------------|-------------------------------------------------|
| NZO                              |          | 0.0000               | 0.0000        | 0.0000                                                 | 0.0000                                          |
| 2H2                              | MT/yr    | 0.0000               | 0.0000        | 1.0000e- (                                             | 1.0000e-<br>005                                 |
| Total CO2                        | <u> </u> | 0.0000               | 0.0000        | 0.4587                                                 | 0.4587                                          |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.0000               | 0.0000        | 0.4587                                                 | 0.4587                                          |
| Bio- CO2                         |          | 0.0000               | 0.0000        | 0.0000                                                 | 0.0000                                          |
| t PM2.5<br>Total                 |          | 0.0000               | 0.0000        | 1.4000e-<br>004                                        | 1.4000e-<br>004                                 |
| Exhaust<br>PM2.5                 |          | 0.0000 0.0000        | 0.0000        | 0000.                                                  | 0.000                                           |
| Fugitive Exhaust<br>PM2.5 PM2.5  |          |                      | 0.0000        | 1.4000e- 0<br>004                                      | 1.4000e-<br>004                                 |
| PM10<br>Total                    |          | 0.0000               | 0.0000        | 5.3000e-<br>004                                        | 5.3000e-<br>004                                 |
| Exhaust<br>PM10                  | tons/yr  | 0.0000 0.0000        | 0.000         | 0.0000                                                 | 0.0000                                          |
| Fugitive<br>PM10                 | (Ou      | 0.0000               | 0.0000        | 5.2000e-<br>004                                        | 5.2000e-<br>004                                 |
| <b>S</b> 02                      |          | 0.0000               | 0.0000        | 1.0000e-<br>005                                        | 1.0000e-<br>005                                 |
| NOX CO SO2                       |          | 0.0000               | 0.0000        | 1.7400e-<br>003                                        | 1.7400e-<br>003                                 |
| XON                              |          | 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 2.1000e- 1.5000e- 1.7400e- 1.0000e-<br>004 004 003 005 | 2.1000e- 1.5000e- 1.7400e- 1.0000e- 004 003 005 |
| ROG                              |          | 0.0000               | 0.0000        | 2.1000e-<br>004                                        | 2.1000e-<br>004                                 |
|                                  | Category | Hauling              | Vendor        | Worker                                                 | Total                                           |

3.5 Building Construction - 2022

| Yuppetgery                                                      | Carrenti | 1                                               | 1                        |
|-----------------------------------------------------------------|----------|-------------------------------------------------|--------------------------|
| CO2e                                                            |          | 294.8881                                        | 0.0000 294.8881          |
| N20                                                             |          | 0.0000                                          | 0.0000                   |
| CH4                                                             | n.       | 0.0702                                          | 0.0702                   |
| Fotal, CO2                                                      | /IMI     | 293.1324                                        | 293.1324                 |
| Bio-CO2                                                         |          | 0.0000 293.1324 293.1324 0.0702 0.0000 294.8881 | 0.0000 293.1324 293.1324 |
| Bio-CO2 N                                                       |          | 0.0000                                          | 0.0000                   |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4.                           |          | 0.0963                                          | 0.0963                   |
| Exhaust<br>PM2.5                                                |          | 0.0963                                          | 0.0963                   |
| gitive Exhaust PM10 Fugitive Exhaust M10 PM10 Total PM2.5 PM2.5 |          |                                                 |                          |
| PM10<br>Total                                                   |          | 0.1023                                          | 0.1023                   |
| Exhaust<br>PM10                                                 | W.       | 0.1023 0.1023                                   | 0.1023                   |
| ğο                                                              | tons/yr  |                                                 |                          |
| SOS                                                             |          | 3.4100e-<br>003                                 | 3.4100e-<br>003          |
| 00                                                              |          | 2.0700                                          | 2.0700                   |
| ×ON                                                             |          | 1.9754                                          | 1.9754 2.0700 3.4100e-   |
| ROG                                                             |          | 0.2158 1.9754 2.0700 3.4100e-                   | 0.2158                   |
|                                                                 | Category | Off-Road                                        | Total                    |

Date: 1/12/2021 2:26 PM Page 19 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2022
Unmitigated Construction Off-Site

| CO2e                           |          | 0.0000               | 442.6435          | 664.4604                 | 0.0000 1,107.103                  |
|--------------------------------|----------|----------------------|-------------------|--------------------------|-----------------------------------|
| NZO                            |          | 0.0000               | 0.0000            | 0.0000                   | 0.0000                            |
| CH <b>4</b>                    | Ŋ.       | 0.0000 0.0000 0.0000 | 0.0264            | 0.0187                   | 0.0451                            |
| Total CO2                      | MT/yr    | 0.0000               | 441.9835          | 663.9936                 | 1,105.977<br>1                    |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.0000 0.0000        | 441.9835 441.9835 | 663.9936 663.9936        | 0.0000 1,105.977 1,105.977<br>1 1 |
| Bio-CO2                        |          | 0.0000               | 0.0000            | 0.000.0                  | 0.000                             |
| PM2.5 B<br>Total               |          | 0.0000               | 0.0359            | 0.2065                   | 0.2424                            |
| Exhaust<br>PM2.5               |          | 0.0000               | 3.0400e-<br>003   | 5.7400e-<br>003          | 8.7800e-<br>003                   |
| Fugitive<br>PM2.5              |          | 0.0000               | 0.0329            | 0.2007                   | 0.2336                            |
| PM10<br>Total                  |          | 0.000.0              | 0.1171            | 0.7619                   | 0.8790                            |
| Exhaust<br>PM10                | tons/yr  | 0000 0.0000          | 3.1800e-<br>003   | 6.2300 <b>e</b> -<br>003 | 9.4100e-<br>003                   |
| Fugitive<br>PM10               | ton      |                      | 0.1140            | 0.7557                   | 9698'0                            |
| 205                            |          | 0.0000               | 4.5500e- C<br>003 | 7.3500e- C<br>003        | 0.0119                            |
| NOx CO SO2                     |          | 0.0000               | 0.4580            | 2.5233                   | 2.9812 0.0119                     |
| ×ON                            |          | 0.0000 0.0000 0.0000 | 1.6961            | 0                        | 1.9125                            |
| ROG                            |          | 0.0000               | 0.0527            | 0.3051                   | 0.3578                            |
|                                | Category | Hauling              | Vendor            | Worker                   | Total                             |

| C02e                                  |          | 294.8877                                        | 294.8877                        |
|---------------------------------------|----------|-------------------------------------------------|---------------------------------|
| N2O                                   |          | 0.0000 293.1321 293.1321 0.0702 0.0000 294.8877 | 0.0000 294.8877                 |
| CH4                                   | ,<br>V   | 0.0702                                          | 0.0702                          |
| Total CO2                             | TMI      | 293.1321                                        | 293.1321                        |
| Bio-CO2 NBio-CO2 Total CO2 CH4        |          | 293.1321                                        | 0.0000 293.1321 293.1321 0.0702 |
| Bio- CO2                              |          | 0.0000                                          | 0.0000                          |
| PM2.5<br>Total                        |          | 0.0963 0.0963                                   | 0.0963                          |
| Exhaust<br>PM2.5                      |          | 0.0963                                          | 0.0963                          |
| Fugitive<br>PM2.5                     |          |                                                 |                                 |
| PM10<br>Total                         |          | 0.1023                                          | 0.1023                          |
| gitive Exhaust PM10<br>M10 PM10 Total | ons/yr   | 0.1023 0.1023                                   | 0.1023                          |
| Fug                                   | tons     |                                                 |                                 |
| <b>20</b> 5                           |          | 3.4100e-<br>003                                 | 3.4100e-<br>003                 |
|                                       |          | 2.0700                                          | 2.0700                          |
| NOX CO.                               |          | 1.9754                                          | 1.9754 2.0700 3.4100e-<br>003   |
| ROG                                   |          | 0.2158 1.9754 2.0700                            | 0.2158                          |
|                                       | Category | Off-Road                                        | Total                           |

Date: 1/12/2021 2:26 PM Page 20 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.5 Building Construction - 2022
Mitigated Construction Off-Site

| CO2e                                   |          | 0.0000               | 442.6435            | 664.4604            | 0.0000 1,107.103         |
|----------------------------------------|----------|----------------------|---------------------|---------------------|--------------------------|
| N2O                                    |          | 0.0000               | 0.0000              | 0.0000              | 0.0000                   |
| СН4                                    | 16,      | 0.000                | 0.0264              | 0.0187              | 0.0451                   |
| Total CO2                              | JÁ/LIM   | 0.0000               | 441.9835            | 663.9936            | 1,105.977<br>1           |
| Bio- CO2   NBio- CO2   Total CO2   CH4 |          | 0.0000 0.0000        | 441.9835 - 441.9835 | 663.9936 1 663.9936 | 1,105.977 1,105.977<br>1 |
| Bio-CO2                                |          | 0.000.0              | 0.0000              | 0.000               | 0000'0                   |
| PM2.5<br>Total                         |          | 0.000.0              | 0.0359              | 0.2065              | 0.2424                   |
| Exhaust<br>PM2.5                       |          | 0.000.0              | 3.0400e-<br>003     | 5.7400e-<br>003     | 8.7800e-<br>003          |
| Fugitive<br>PM2.5                      |          | 0.0000               | 0.0329              | 0.2007              | 0.2336                   |
| PM10<br>Total                          |          | 0.0000               | 0.1171              | 0.7619              | 0.8790                   |
| Exhaust<br>PM10                        | tońskyr  | 0.0000               | 3.1800e-<br>003     | 6.2300e-<br>003     | 9.4100e-<br>003          |
| Fugitive<br>PM10                       | toni     | 0.0000               | 3.1140              | 0.7557              | 0.8696                   |
| S02                                    |          | 0.0000               | 4.5500e- 0.         | 2.5233 7.3500e- (   | 0.0119                   |
| 03                                     |          | 0.0000               | 0.4580              | 2.5233              | 2.9812                   |
| XON                                    |          | 0.0000 0.0000 0.0000 | 1.6961              | 0.2164              | 1.9125                   |
| ROG                                    |          | 0.0000               | 0.0527              | 0.3051              | 0.3578                   |
|                                        | Category | Hauling              | Vendor              | Worker              | Total                    |

# 3.5 Building Construction - 2023

| ROG         NOX         CO         SO2         Fugitive         Exhaust         PML2.5         PML2.5         Total         PML2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tugações est     | ang madapa |                 | T               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-----------------|-----------------|
| Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 Total FM2.5 PM2.5 Total Total Constyr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C02e             |            | 287.9814        | 287.9814        |
| Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 Total tons/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . N2O            |            | 0.0000          | 0.0000          |
| Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 Total tons/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH4              | <b>.</b>   | 0.0681          | 0.0681          |
| Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 Total Total PM2.5 PM2.5 Total Total PM2.5 PM2.5 Total Total PM2.5 PM2 | Total CO2        | TM.        | 286.2789        | 286.2789        |
| Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 Total Total PM2.5 PM2.5 Total Total PM2.5 PM2.5 Total PM2.5 PM2.5 Total PM2.5 PM2 | NBio-CO2         |            | 286.2789        | 286.2789        |
| Fugitive Exhaust PM10 Fugitive PM2.5 Total PM2.5 tons/yr. 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864  | Bio-CO2          |            | 0.0000          | 0.0000          |
| Fugitive Exhaust PM10 Fugitive PM2.5 Total PM2.5 tonsiyr. 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864  | PM2,5<br>Total   |            | 0.0813          | 0.0813          |
| Fugitive Exhaust PM10 Fugitive PM2.5 Total PM2.5 tons/yr. 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864 0.0864  | Exhaust<br>PM2.5 |            | 0.0813          | 0.0813          |
| Fugitive Exhaust PM10 PM10 Total tons/yr.  0.0864 0.0864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ugitive<br>VM2.5 |            |                 |                 |
| Fugitive Exhaust PM10 PM10 fons/yr 0.0864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PM10<br>Total    |            | 0.0864          | 0.0864          |
| Fugitive<br>PM10<br>tor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Exhaust<br>PM10  | Ty.        |                 | 0.0864          |
| ROG NOX CO SOZ  0.1942 1.7765 2.0061 3.3300e- 0.1942 1.7765 2.0061 3.3300e-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fugitive<br>PM10 |            |                 |                 |
| 0.1942 1.7765 2.0061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>S</b> 02      |            | 3.3300e-<br>003 | 3.3300e-<br>003 |
| 0.1942 1.7765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                |            | 2.0061          | 2.0061          |
| 0.1942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |            | 1.7765          | 1.7765          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROG              |            | 0.1942          |                 |
| Calegory Off-Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |            |                 | Total           |

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 44

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/12/2021 2:26 PM

3.5 Building Construction - 2023
Unmitigated Construction Off-Site

|                                  | Hartige. | I                                  |                               | · (0              | 16                                |
|----------------------------------|----------|------------------------------------|-------------------------------|-------------------|-----------------------------------|
| C02e                             |          | 0.0000                             | 418.5624                      | 624.9466          | 1,043.50<br>0                     |
| N2O                              |          | 0.0000                             | 0.0000                        | 0.0000            | 0.0000 1,043.509<br>0             |
|                                  | J.       | 0.0000                             | 0.0228                        | 0.0164            | 0.0392                            |
| Total CO2                        | MTVF     | 0.0000 0.0000                      | 417.9930                      | 624.5363          | 1,042.529<br>4                    |
| NBio-CO2                         |          | 0.000.0                            | 417.9930 417.9930 0.0228      | 624.5363 624.5363 | 0.0000 1,042.529 1,042.529<br>4 4 |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.0000                             | 0.0000                        | 0.0000            | 0.000                             |
| PM2.5<br>Total                   |          | 0.0000                             | 0.0335                        | 0.2014            | 0.2349                            |
| Exhaust<br>PM2.5                 |          | 0.0000 0.0000 0.0000 0.0000 0.0000 | 1.4000e-<br>003               | 5.4500e-<br>003   | 6.8500e-<br>003                   |
| Fugitive Exhaust PM2.5           |          | 0.000.0                            | 0.0321                        | 0.1960            | 0.2281                            |
| PM10<br>Total                    |          | 0.0000                             | 0.1127                        | 0.7436            | 0.8564                            |
| Exhaust PM10<br>PM10 Total       | tons/yr  | 0.000.0                            | 1.4600e-<br>003               | 5.9100e-<br>003   | 7.3700e-<br>003                   |
| Fugitive<br>PM10                 | ton      |                                    | 0.1113                        | .7377             | 0.8490                            |
| s02                              |          | 0.0000                             | 4.3000e-<br>003               | 6.9100e- 0<br>003 | 0.0112                            |
| တ                                |          | 0.0000                             | 4011                          | 2635              | 2.6646                            |
| ROG NOx CO SO2                   |          | 0.0000 0.0000 0.0000               | 1,2511 0.4011 4.3000e-<br>003 | 0.1910 2          | 0.3177 1.4420                     |
| ROG                              |          | 0.0000                             | 0.0382                        | 0.2795            | 0.3177                            |
|                                  | Category | Hauling                            | Vendor                        | Worker            | Total                             |

| Exhaust         PMI0         Fugitive         Exhaust         PMZ.5         Bio- CO2         Inside CO2         Total CO2         CH4         N2O         CO2e           s/yr         0.0864         0.0864         0.0813         0.0813         0.0813         0.0860         286.2785         286.2785         0.0681         0.0000         287.9811           0.0864         0.0864         0.0864         0.0813         0.0813         0.0863         286.2785         0.0681         0.0000         287.9811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PM/10   Fugitive   Exhaust   PM2.5   Total   Dio-CO2   Total CO2   Total CO2   Total CO2   CH4   NIZO   Total CO3   Sec. 2785   CH4   NIZO   NIZO   CH4   |  |
| PM/10   Fugitive   Exhaust   PM/2.6   Bio- CO2   NBio- CO2   Total CO2   CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| PM/10 Total- Total         Exhaust PM2.5 PM2.5 Total         Bio- CO2 PM3-CO2 PM3-CO2 PM3-CO2 PM3-CO2 PM3-CO3                                          |  |
| PM/10   Fugitive         Exhaust PM2.5   PM2.5   PM2.5   PM2.5   Total         PM2.5   Total         NBio-CO2   NBio-CO2   NBio-CO2   PM2.5   PM2.5   Total           0.0864   0.0813   0.0813   0.0800   286.2785   PM2.5   DM2.5                                                                             |  |
| PM10 Fugitive Exhaust PM2.5 Bio-CO2 Total Total 0.0864  0.0864 0.0813 0.0813 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PM/10 Fugitive Exhaust PM2.5 Total Total 0.0864 0.0813 0.0813 0.0864 0.0813 0.0813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| PM/10 Fugitive Exhaust PM2.5 P |  |
| PM10 Fugitive<br>Total PM2.5<br>0.0864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| PM10<br>Total<br>0.0864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Exhaust<br>PM10<br>Oh8/yr<br>0.0864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Fugitive<br>PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 3.3300e-<br>003<br>003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2.0061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1.7765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| NOX NOX 0.1942 1.7765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Category, Off-Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 22 of 44

Date: 1/12/2021 2:26 PM

3.5 Building Construction - 2023
Mitigated Construction Off-Site

| CO2e                           |          | 0.0000                      | 418.5624          | 624.9466                     | 1,043.509<br>0             |
|--------------------------------|----------|-----------------------------|-------------------|------------------------------|----------------------------|
| NZO                            |          | 0.0000 0.0000               | 0.0000            | 0.0000                       | 0.0000                     |
| CF4                            | ıyı.     | 0.0000                      | 0.0228            | 0.0164                       | 0.0392                     |
| Total CO2                      | MEVyr    | 0.0000                      | 417.9930          | 624.5363                     | 1,042.529<br>4             |
| Bio-CO2 NBio-CO2 Total-CO2 CH4 |          | 0.0000 0.0000 0.0000 0.0000 | 417.9930 417.9930 | 624.5363   624.5363   0.0164 | 0.0000 1,042.529 1,042.529 |
| Bio-CO2                        |          | 0.0000                      | 0.0000            | 0.0000                       | 0.0000                     |
| PW2.5<br>Fotal                 |          | 0.0000                      | 0.0335            | 0.2014                       | 0.2349                     |
| Exhaust<br>PM2.5               |          | 0.0000 0.0000 0.0000 0.0000 | 1.4000e-<br>003   | 5.4500e-<br>003              | 6.8500e-<br>003            |
| Fugitive<br>PM2.5              |          | 0.0000                      | 0.0321            | 0.1960                       | 0.2281                     |
| PM10<br>Total                  |          | 0.0000                      | 0.1127            | 0.7436                       | 0.8564                     |
| Exhaust<br>PM10                | tons/yr  | 0.0000                      | 1.4600e-<br>003   | 5.9100e-<br>003              | 7.3700e-<br>003            |
| Fugitive<br>PM10               | ton      | 0.0000                      | 0.1113            | 0.7377                       | 0.8490                     |
| co soz                         |          | 0.0000                      | 4.3000e-<br>003   | 6.9100e-<br>003              | 0.0112                     |
| ဝ၁                             |          | 0.0000                      | <b>.4</b> 011     | 2.2635                       | 2.6646                     |
| NOx                            |          | 0.0000 0.0000 0.0000        | 1.2511 0          | 0.1910                       | 0.3177 1.4420              |
| ROG                            |          | 0.0000                      | 0.0382            | 0.2795                       | 0.3177                     |
|                                | Category | Hauling                     | Vendor            | Worker                       | Total                      |

3.6 Paving - 2023

| C02e                                 |             | 13.1227                                       | 0.000.0 | 13.1227                   |
|--------------------------------------|-------------|-----------------------------------------------|---------|---------------------------|
| NZO                                  |             | 13.0175 13.0175 4.2100e 0.0000 13.1227<br>003 | 0.000.0 | 0.0000                    |
|                                      | <b>1</b> 5, | 4.2100 <del>6.</del><br>003                   | 0.0000  | 5 13.0175 4.2100e-<br>003 |
| Total CO2                            | Mīrkyr      | 13.0175                                       | 0.0000  | 13.0175                   |
| NBio-CO2                             |             | 13.0175                                       | 0.0000  | 13.0175                   |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 |             | 0000                                          | 0.0000  | 0.0000                    |
| PM2.5<br>Total                       |             | 3.0500e- (<br>003                             | 0.0000  | 3.0500e-<br>003           |
| Fugitive Exhaust<br>PM2.5 PM2.5      |             | 3.0500e- 1 3<br>003                           | 0.0000  | 3.0500e-<br>003           |
| Fugitive<br>PM2.5                    |             |                                               |         |                           |
| PM10<br>Total                        |             | 3.3200e-<br>003                               | 0.000   | 3.3200e-<br>003           |
| CO SO2 Fligitive Exhaust PM10        | fonsíýr     | 3.3200e-<br>003                               | 0.0000  | 3.3200e- 3.<br>003        |
| Fugitive<br>PM10                     | ton         |                                               |         |                           |
| SO2                                  |             | 1.5000 <b>e</b> -<br>004                      |         | 1.5000e-<br>004           |
| 8                                    |             | 0.0948                                        |         | 0.0948                    |
| ROG NÓX                              |             | 0.0663                                        |         | 0.0663                    |
| ROG                                  |             | 6.7100e- 0.0663 0.0948 1.5000e-<br>003 004    | 0.0000  | 6.7100e-<br>003           |
|                                      | Category    | Off-Road                                      | Paving  | Total                     |

Date: 1/12/2021 2:26 PM Page 23 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2023
Unmitigated Construction Off-Site

|                                  |          | -                                  |               |                                                                     |                                                      |
|----------------------------------|----------|------------------------------------|---------------|---------------------------------------------------------------------|------------------------------------------------------|
| CO2e                             |          | 0.0000                             | 0.0000        | 0.6160                                                              | 0.6160                                               |
| N2O                              |          | 0.0000                             | 0.0000        | 0.0000                                                              | 0.0000                                               |
| CH4                              | ,<br>,   | 0.0000                             | 0.0000        | 2.0000e-<br>005                                                     | 2.0000e-<br>005                                      |
| Total CO2                        | MTAT     | 0.0000 0.0000                      | 0.0000        | 0.6156                                                              | 0.6156                                               |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.000.0                            | 0.0000        | 0.6156                                                              | 0.6156                                               |
| Bio- CO2                         |          | 0.0000                             | 0.0000        | 0.0000                                                              | 0.0000                                               |
| PM2.5<br>Total                   |          | 0.0000                             | 0.0000        | 2.0000e-<br>004                                                     | 2.0000e-<br>004                                      |
| Exhaust<br>PM2.5                 |          | 0.0000 0.0000                      | 0.0000        | 0000e-                                                              | 1.0000e- 2.0                                         |
| Fugitive<br>PM2.5                |          | 0.0000 0.0000                      | 0.0000        | 9000e-<br>004                                                       | 1.9000e-<br>004                                      |
| PM10<br>Total                    |          | 0.0000                             | 0.0000        | 000e-<br>004                                                        | 000e-<br>004                                         |
| Exhaust<br>PM10                  | tons/yr  | 0.0000                             | 0.0000        | 1.0000e-<br>005                                                     | 1.0000e-<br>005                                      |
| Fugitive<br>PM10                 | uo)      | 0.0000                             | 0.0000        | 7.3000e-<br>004                                                     | 7.3000e-<br>004                                      |
| <b>用用有数数</b>                     |          | 0.0000                             | 0.0000 0.0000 | 1.0000e-<br>005                                                     | 1.0000e-<br>005                                      |
| co co                            |          | 0.0000                             | 0.0000        | 2.2300e-<br>003                                                     | 2.2300e-<br>003                                      |
| ROG NOx                          |          | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000        | 1.9000e-<br>004                                                     | 2.8000e- 1.9000e- 2.2300e- 1.0000e- 7.3000e- 004 004 |
| ROG                              |          | 0.0000                             | 0.0000        | 2.8000e- 1.9000e- 2.2300e- 1.0000e- 7.3000e-<br>004 004 003 005 004 | 2.8000e-<br>004                                      |
|                                  | Category | Hauling                            | Vendor        | Worker                                                              | Total                                                |

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 44

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/12/2021 2:26 PM

3.6 Paving - 2023
Mitigated Construction Off-Site

| CO2e                         |          | 0.0000               | 0.0000  | 0.6160                                          | 0.6160                                      |
|------------------------------|----------|----------------------|---------|-------------------------------------------------|---------------------------------------------|
| OZN                          |          | 0.0000 0.0000        | 0.0000  | 0.0000                                          | 0.0000                                      |
| CH4                          | J.       | 0.0000               | 0.0000  | 2.0000e-<br>005                                 | 2.0000e-<br>005                             |
| Total CO2                    | MITAY    | 0.0000               | 0.0000  | 0.6156                                          | 0.6156                                      |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000 0.0000        | 0.0000  | 0.6156                                          | 0.6156                                      |
| Bio-CO2                      |          | 0.0000               | 0.0000  | 0.0000                                          | 0.0000                                      |
| PM2.5<br>Total               |          | 0.0000               | 0.0000  | 2.0000e-<br>004                                 | 2.0000e-<br>004                             |
| Exhaust<br>PM2.5             |          | 0.0000               | 0.000.0 | 1.0000e-<br>005                                 | 1.0000e-<br>005                             |
| Fugitive<br>PM2.5            |          | 0.000                | 0.0000  | 1.900C<br>004                                   | 1.9000<br>004                               |
| PM10<br>Total                |          |                      | 0.0000  | 3000e-<br>004                                   | 7.300C<br>004                               |
| Exhaust<br>PM10              | síyr     | 0.0000 0.0000        | 0.000.0 | 1.0000e- 7.<br>005                              | 1.0000e-<br>005                             |
| Fugitive<br>PM10             | tons/yr  | 0.000.0              | 0.0000  | 7.3000e-<br>004                                 | 7.3000e-<br>004                             |
| S02                          |          | 0.0000               | 0.0000  | 1.0000e-<br>005                                 | 1.0000e-<br>005                             |
| NOx C0 S02                   |          | 0.0000               | 0.0000  | 2.2300e-<br>003                                 | 2.2300e-<br>003                             |
| NOX                          |          | 0.0000 0.0000 0.0000 | 0.0000  | 2.8000e- 1.9000e- 2.2300e- 1.0000e- 004 003 005 | 2.8000e- 1.9000e- 2.2300e- 1.0000e- 004 005 |
| ROG                          |          | 0.0000               | 0.0000  | 2.8000e-<br>004                                 | 2.8000e-<br>004                             |
|                              | Сатедолу | Hauling              | Vendor  | Worker                                          | Total                                       |

3.6 Paving - 2024

| ž≘ I                         | PM/10 PM/10     |                 | PM10                                         |
|------------------------------|-----------------|-----------------|----------------------------------------------|
| tons/yr                      | tons/yr         | tons/yr         | tons/yr                                      |
| 5.1500e- 5.1500e-<br>003 003 | 5.1500e-<br>003 | 5.1500e-<br>003 | 0.0109 0.1048 0.1609 2.5000e- 5.1500e- 0.003 |
| 0.0000                       | 0.000           | 0.000           | 0.0000                                       |
| 5.1500e-<br>003              |                 |                 | •                                            |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 25 of 44

Date: 1/12/2021 2:26 PM

**Unmitigated Construction Off-Site** 3.6 Paving - 2024

| Fr. Susceria                                     | E - Tourse Pa |                                           |         |                                                |                                       |
|--------------------------------------------------|---------------|-------------------------------------------|---------|------------------------------------------------|---------------------------------------|
| C02e                                             |               | 0.0000                                    | 0.0000  | 1.0100                                         | 1.0100                                |
| NZO                                              |               | 0.0000                                    | 0.0000  | 0.0000                                         | 0.0000                                |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 N20 Total | МТ/ут         | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000  | 3.0000e-<br>005                                | 4 3.0000e-<br>005                     |
| Total CO2                                        | Ā             | 0.0000                                    | 0.0000  | 1.0094                                         | 1.0094                                |
| NBio-CO2                                         |               | 0.0000                                    | 0.0000  | 1.0094                                         | 1.0094                                |
| Bio- CO2                                         |               | 0.000.0                                   | 0.0000  | 0.0000                                         | 0.0000                                |
| PM2.5<br>Total                                   |               | 0.0000                                    | 0.0000  | 3.4000e-<br>004                                | 3.4000e-<br>004                       |
| Exhaust<br>PM2.5                                 |               | 0.0000                                    | 0.0000  | 0000e-<br>005                                  | 1.0000e-<br>005                       |
| Fugitive<br>PM2.5                                |               | 0.0000                                    | 0.000   | 3.3000e- 1.<br>004                             | 3.3000e-<br>004                       |
| PM10<br>Total                                    |               | 0.0000                                    | 0.000.0 | 2400e-<br>003                                  | 1.2400e-<br>003                       |
| Exhaust<br>PM10                                  | tons/yr       | 0.0000 0.0000 0.0000                      | 0.0000  | .0000e-<br>005                                 | - 1.0000e-<br>005                     |
| Fugitive<br>PM10                                 | (On           |                                           | 0.0000  | 1.2300e-<br>003                                | 2300e<br>003                          |
| S02                                              |               | 0.0000                                    | 0.0000  | 1.0000e-<br>005                                | 1.0000e-<br>005                       |
| 0၁                                               |               | 0.0000                                    | 0.0000  | 3.5100e-<br>003                                | 3.5100e-<br>003                       |
| ROG NOx                                          |               | 0.000.0 0.000.0 0.000.0                   | 0.0000  | 44000e- 2,9000e- 3,5100e- 1,0000e- 004 004 005 | 4.4000e- 2.9000e- 3.5100e-<br>004 003 |
| ROG                                              |               | 0.0000                                    | 0.0000  | 4.4000e-<br>004                                | 4.4000e-<br>004                       |
|                                                  | Category      | Hauling                                   | Vendor  | Worker                                         | Total                                 |

| -ugitive Exhaust PM10 Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e PM10 PM10 Total PM2.5 PM2.5 Total | tonstyr  | 5.1500e- 5.1500e- 6.1500e- 6.1500e- 6.1500e- 6.1500e- 6.1000 7.1200e- 6.0000 72.2073 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 5.1500e-     5.1500e-     4.7400e-     4.7400e-     4.7400e-     0.0000     22.0292     22.0292     7.1200e-     0.0000     22.2073       003     003     003     003 |
|------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SO2. Fugitive Exhaust<br>PM10 PM10                                                                                     |          | 5.1500e-<br>003                                                                      | 0.0000                                                                | 5.1500e-<br>003                                                                                                                                                       |
| NOX XON                                                                                                                |          | 0.0109 0.1048 0.1609 2.5000e-                                                        |                                                                       | 0.0109 0.1048 0.1609 2.5000e-<br>004                                                                                                                                  |
| ROG                                                                                                                    | Category | Off-Road 0.0109                                                                      | Paving 0.0000                                                         | Total 0.0109                                                                                                                                                          |

Date: 1/12/2021 2:26 PM Page 26 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

3.6 Paving - 2024
Mitigated Construction Off-Site

| C02e                                                 |          | 0.0000               | 0.0000  | 1.0100                                | 1.0100                       |
|------------------------------------------------------|----------|----------------------|---------|---------------------------------------|------------------------------|
| NZO                                                  |          | 0.0000               | 0.0000  | 0.0000                                | 0.0000                       |
| CF4                                                  | 'yı      | 0.000.0              | 0.0000  | 3.0000e-<br>005                       | 3.0000e-<br>005              |
| Total CO2                                            | EW.      | 0.000                | 0.0000  | 1.0094                                | 1.0094                       |
| NBio-CO2                                             |          | 0.000.0              | 0.0000  | 1.0094                                | 1.0094                       |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 Total             |          | 0.000.0              | 0.0000  | 0.0000                                | 0.000                        |
| PM2.5<br>Total                                       |          | 0.000.0              | 0.0000  | 3.4000e-<br>004                       | 3.4000e-<br>004              |
| Exhaust<br>PM2.5                                     |          | 0.0000               | 0.0000  | 1.0000e-<br>005                       | 1.0000e- 3<br>005            |
| Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |          | 0.000.0              | 0.0000  | 3000e-<br>004                         | 3.3000e-<br>004              |
| PM10<br>Total                                        |          | 0.0000 0.0000        | 0.0000  | 1.2400e-<br>003                       | 1.2400e-<br>003              |
| Exhaust<br>PM10                                      | skyr     | 0.0000               | 0.000.0 | 1.0000e-<br>005                       | 1.0000e-<br>005              |
| Fugitive<br>PM10                                     | tons/yr  | 0.0000               | 0.0000  | 1.2300 <del>c.</del><br>003           | 1.2300e-<br>003              |
| S02                                                  |          | 0.0000               | 0.0000  | )e- 1.0000e- 1.2<br>005 (             | 1.0000e-<br>005              |
| 00                                                   |          | 0.0000               | 0.000.0 | 3.5100e-<br>003                       | 3.5100e-<br>003              |
| ROG NOx CO SO2                                       |          | 0.0000               | 0.000.0 | 2.9000e-<br>004                       | 4.4000e- 2.9000e-<br>004 004 |
| Rog                                                  |          | 0.0000 0.0000 0.0000 | 0.0000  | 4.4000e- 2.9000e- 3.5100e-<br>004 003 | 4.4000e-<br>004              |
|                                                      | Category | Hauling              | Vendor  | Worker                                | Total                        |

3.7 Architectural Coating - 2024 Unmitigated Construction On-Site

|                                                 |           |                             | _                             |                   |
|-------------------------------------------------|-----------|-----------------------------|-------------------------------|-------------------|
| CO2e                                            |           | 0.0000                      | 4.4745                        | 4.4745            |
| NZO                                             |           | 0.0000                      | 0.000.0                       | 0.0000            |
| CH44                                            |           |                             | 4,4682 2,5000e- (             | 4.4682 2.5000e- 0 |
| Total CO2                                       | MT/yr     | 0.0000                      | 4.4682                        | 4.4682            |
| NBio-CO2                                        |           | 0.0000 0.0000 0.0000 0.0000 | 4.4682                        | 4.4682            |
| Bio-CO2                                         |           | 0.0000                      | 0.000.0                       | 0.0000            |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e |           | 0.000.0                     | 1.0700e-<br>003               | 1.0700e- 0<br>003 |
|                                                 |           | 0.0000 0.0000               | 1.0700e-<br>003               | 1.0700e-<br>003   |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5      |           |                             | <br> <br> <br> <br> <br> <br> |                   |
| PM10<br>Total                                   |           | 0.000.0                     | 1.0700e-<br>003               | 1.0700e-<br>003   |
| Exhaust<br>PM10                                 | tons/yr   | 0.0000                      | 1.0700e- 1.0700e-<br>003 003  | 1.0700e-<br>003   |
| Fugitive<br>PM10                                | <b>lo</b> |                             |                               |                   |
| SO2                                             |           |                             | 5.0000 <b>e-</b><br>005       | 5.0000e-<br>005   |
| ဝ၁                                              |           |                             | 0.0317                        | 0.0213 0.0317     |
| NOX                                             |           |                             | 0.0213                        | 0.0213            |
| ROG                                             |           | 4.1372                      | 3.1600e- 0.0213<br>003        | 4.1404            |
|                                                 | Category  | Archit. Coating 4.1372      | Off-Road                      | Total             |

Page 27 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/12/2021 2:26 PM

3.7 Architectural Coating - 2024
Unmitigated Construction Off-Site

| C02e                         |          | 0.0000               | 0.0000        | 17.1394                        | 17.1394                      |
|------------------------------|----------|----------------------|---------------|--------------------------------|------------------------------|
| NZO                          |          | 0.0000               | 0.0000        | 0.0000                         | 0.0000                       |
| CH4                          | N.       |                      | 0.0000        | 4.3000e- (                     | 4.3000e-<br>004              |
| Total CO2                    | MT/yr    | 0.0000 0.0000        | 0.0000        | 17.1287                        | 17.1287 4.3000e-             |
| NBio-CO2                     |          | 0.000.0              | 0.000.0       | 17.1287                        | 17.1287                      |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000 0.0000        | 0.000.0       | 0.0000                         | 0.0000                       |
| PM2.5<br>Total               |          | 0.000.0              | 0000.0        | 5.7000e-<br>003                | 5.7000e-<br>003              |
| Exhaust<br>PM2.5             |          | 0.0000               | 0.0000        | 1.5000e-<br>004                | 1.5000e-<br>004              |
| PM10 Fugitive<br>Total PM2.5 |          | 0.000 0.0000 0.0000  | 0.0000        | 5.5500e-<br>003                | 1 5.5500e-<br>003            |
| PIM10<br>Total               |          | 0.000.0              | 0.000.0       | .021                           | .021                         |
| Exhaust<br>PM10              | JAC.     | 0.000.0              | 0.000.0       | 1.6000e-<br>004                | 1.6000e-<br>004              |
| SO2 Fugitive<br>PM10         | tons/yr  | 0.000.0              | 0.0000        | .0209                          | 0.0209                       |
| S02                          |          | 0.000.0              | 0.000.0       | 1.9000e- 0<br>004              | 1.9000e-<br>004              |
| တ                            |          | 0.0000               | 0.000.0       | 0.0596                         | 0.0596                       |
| NOx CO                       |          | 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 4.9300e-<br>003                | 7.4800e- 4.9300e-<br>003 003 |
| ROG                          |          | 0.0000               | 0.0000        | 7.4800e- 4.9300e- (<br>003 003 | 7.4800e-<br>003              |
|                              | Category | Hauling              | Vendor        | Worker                         | Total                        |

|                            | ■ #= <b>27</b> 5 % . • . • . |                                    |                     |                 |
|----------------------------|------------------------------|------------------------------------|---------------------|-----------------|
| CO2e                       |                              | 0.0000                             | 4.4745              | 4.4745          |
| N2O                        |                              | 0.000.0                            | 0.0000              | 0.0000          |
| сн4                        | У                            | 0.000.0                            | 2.5000e-<br>004     | 2.5000e-<br>004 |
| Total CO2                  | MT/yr                        | 0.000.0                            | 4.4682 2.5000e- 0.0 | 4.4682          |
| NBio- CO2                  |                              | 0.0000 0.0000 0.0000 0.0000 0.0000 | 4.4682              | 4.4682          |
| Bio-CO2 NBio-CO2 Total CO2 |                              | 0.000.0                            | 0.000.0             | 0.0000          |
| PM2.5<br>Total             |                              | 0.000                              | 1.0700e-<br>003     | 1.0700e-<br>003 |
| Exhaust<br>PM2.5           |                              | 0.0000                             | 1.0700e-<br>003     | 1.0700e-<br>003 |
| Fugitive<br>PM2.5          |                              |                                    |                     |                 |
| PM10<br>Total              |                              | 0.000.0                            | 1.0700e-<br>003     | 1.0700e-<br>003 |
| Exhaust<br>PM10            | , lýt                        | 0.0000                             | 1.0700e-<br>003     | 1.0700e-<br>003 |
| Fugitive<br>PM10           | tons/yr                      | • • • •                            |                     |                 |
| S02                        |                              |                                    | 5.0000e-<br>005     | 5.0000e-<br>005 |
| CO                         |                              |                                    | 0.0317              | 0.0317          |
| NOX                        |                              |                                    | 0.0213              | 0.0213          |
| ROG                        |                              | 4.1372                             | 3.1600e- 0.<br>003  | 4.1404          |
|                            | Category                     | Archit. Coating                    | Off-Road            | Total           |

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 44

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/12/2021 2:26 PM

3.7 Architectural Coating - 2024
Mitigated Construction Off-Site

| CO2e                                   |          | 0.0000               | 0.000.0 | 17.1394                      | 17.1394                      |
|----------------------------------------|----------|----------------------|---------|------------------------------|------------------------------|
| 25.35.22                               |          |                      | ¦       | <u></u>                      |                              |
| N20                                    |          | 0.0000               | 0.0000  | 0.0000                       | 0.0000                       |
| CF4                                    | VIT (yr. | 0.000                | 0.0000  | 4.3000 <del>c</del> -<br>004 | 4.3000e-<br>004              |
| Total CO2                              | MT       | 0.0000 0.0000        | 0.000.0 | 17.1287                      | 17.1287                      |
| NBio-CO2                               |          | 0.0000               | 0.0000  | 17.1287                      | 17.1287                      |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 Total |          | 0.000.0              | 0.0000  | 0.0000                       | 0.000.0                      |
|                                        |          | 0.000.0              | 0.0000  | 5.7000e-<br>003              | 5.7000e-<br>003              |
| Exhaust<br>PM2.5                       |          | 0.0000 0.0000 0.0000 | 0.0000  | 1.5000e-<br>004              | 1.5000e-<br>004              |
| Fugifive<br>PM2.5                      |          | 0.0000               | 0.0000  | 1 5.5500e-<br>003            | 5.5500e-<br>003              |
| PM10<br>Total                          |          | 0.0000               | 0.0000  | 0.0211                       | 0.0211                       |
| Exhaust<br>PM10                        | tons/yr  | 0.0000               | 0.0000  | 1.6000e-<br>004              | 1.6000e-<br>004              |
| Fugitive<br>PM10                       | fon      | 0.0000               | 0.0000  | 0.0209                       | 0.0209                       |
| S02                                    |          | 0.000.0              | 0.000.0 | 1.9000e-<br>004              | 1.9000e-<br>004              |
| ROG NOX CO                             |          | 0.0000 0.0000 0.0000 | 0.000.0 | 0.0596                       | 0.0596                       |
| NOX                                    |          | 0.0000               | 0.0000  | 7.4800e- 4.9300e-<br>003 003 | 7.4800e- 4.9300e-<br>003 003 |
| ROG                                    |          | 0.0000               | 0.0000  | 7.4800e-<br>003              | 7.4800e-<br>003              |
|                                        | Category | Hauling              | Vendor  | Worker                       | Total                        |

# 4.0 Operational Detail - Mobile

## 4.1 Mitigation Measures Mobile

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 29 of 44

|                                              | (1) justicus e | <b>.</b>                                                                                    | 1,6                                                                |
|----------------------------------------------|----------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| C02e                                         |                | 7,629.016<br>2                                                                              | 7,629.016                                                          |
| NZO                                          |                | 0.000                                                                                       | 0.0000                                                             |
| CH4                                          | Ŋ.             | 0.3407                                                                                      | 0.3407                                                             |
| Total CO2                                    | /IMI           | 7,620.498<br>6                                                                              | 7,620.498<br>6                                                     |
| VBio-CO2                                     |                | 7,620.498<br>6                                                                              | 7,620.498                                                          |
| Bio- CO2                                     |                | 0.000.0                                                                                     | 0.000.0                                                            |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total |                | .7979 0.0580 7.8559 2.0895 0.0539 2.1434 0.0000 7,620.498 7,620.498 0.3407 0.0000 7,629.016 | 2.1434 0.0000 7,620.498 7,620.498 0.3407 0.0000 7,629.016<br>6 6 2 |
| PM10: Fugitive Exhaust<br>Total PM2.5 PM2.5  |                | 0.0539                                                                                      | 0.0539                                                             |
| Fugitive<br>PM2.5                            |                | 2.0895                                                                                      | 0.0580 7.8559 2.0895 0.0539                                        |
| PM10-<br>Total                               |                | 7.8559                                                                                      | 7.8559                                                             |
| Exhaust<br>PM10                              | /yr            | 0.0580                                                                                      | 0.0580                                                             |
| igitive<br>M10                               | tons/yr        | 9767.7                                                                                      | 979                                                                |
| S02                                          |                | 0.0821                                                                                      | 0.0821                                                             |
| 00                                           |                | 19.1834                                                                                     | 19.1834                                                            |
| ROG NOX CO SO2 FI                            |                | 7.9962                                                                                      | 7.9962                                                             |
| ROG                                          |                | 1.5857 7.9962 19.1834 0.0821 7                                                              | 1.5857 7.9962 19.1834 0.0821 7.                                    |
|                                              | Category       | Mitigated                                                                                   | Unmitigated                                                        |

### 4.2 Trip Summary Information

|                                     | Avera    | Average Daily Trip Rate | ite      | Unmitigated | Mitigated  |
|-------------------------------------|----------|-------------------------|----------|-------------|------------|
| Land Use                            | Weekday  | Saturday                | Sunday   | Annual VMT  | Annual VMT |
| Apartments Low Rise                 | 145.75   | 154.25                  | 154.00   | 506,227     | 506,227    |
| Apartments Mid Rise                 | 4,026.75 | 3,773.25                | 4075.50  | 13,660,065  | 13,660,065 |
| General Office Building             | 288.45   | 62.55                   | 31.05    | 706,812     | 706,812    |
| High Turnover (Sit Down Restaurant) | 2,368.80 | 2,873.52                | 2817.72  | 3,413,937   | 3,413,937  |
| Hotel                               | 192.00   | 187.50                  | 160.00   | 445,703     | 445,703    |
| Quality Restaurant                  | 501.12   | 511.92                  | 461.20   | 707,488     | 707,488    |
| Regional Shopping Center            | 528.08   | 601.44                  | 357.84   | 1,112,221   | 1,112,221  |
| Total                               | 8,050.95 | 8,164.43                | 8,057.31 | 20,552,452  | 20,552,452 |
|                                     |          |                         |          |             |            |

### 4.3 Trip Type Information

Page 30 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/12/2021 2:26 PM

|                          |               | Miles      |                    |            | Trip %     |                                  |         | Trip Purpose % | % *     |
|--------------------------|---------------|------------|--------------------|------------|------------|----------------------------------|---------|----------------|---------|
| Land Use                 | H-Worc-W H-So | H-S or C-C | or C-C H-O or C-NW | H-W or C-W | H-S or C-C | HW or C-W H-S or C-G H-O or C-NW | Primary | Diverted       | Pass-by |
| Apartments Low Rise      | 14.70         | 5.90       | 8.70               | 40.20      | 19.20      | 40.60                            | 98      | 1              | 3       |
| Apartments Mid Rise      | 14.70         | 5.90       | 8.70               | 40.20      | 19.20      | 40.60                            | 86      |                | 3       |
| General Office Building  | 16.60         | 8.40       | 9.90               | 33.00      | 48.00      | 19.00                            | 77      | 19             | 4       |
| High Turnover (Sit Down  | 16.60         | 8.40       | 9.90               | 8.50       | 72.50      | 19.00                            | 37      | 20             | 43      |
| Hotel                    | 16.60         | 8.40       | 6.90               | 19.40      | 61.60      | 19.00                            | 58      | 38             | 4       |
|                          | 16.60         | 8.40       | 6.90               | 12.00      | 69.00      | 19.00                            | 38      | 18             | 4       |
| Regional Shopping Center | 16.60         | 8.40       | 6.90               | 16.30      | 64.70      | 19.00                            | 54      | 35             | 1       |
|                          |               |            |                    |            |            |                                  |         |                |         |

#### 4.4 Fleet Mix

| Land Use                               | LDA                        | LDT1                 | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | LDA LDT1 LDT2 MDV LHD1 LHD2 MHD HHD OBUS UBUS MCY SBUS MH                                                            | SBUS     | MH       |
|----------------------------------------|----------------------------|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------------------------------------------------------------------------------------------------------|----------|----------|
| Apartments Low Rise                    | 0.543088 0.044216 0.20     | 0.044216             | 1266     | 0.116369 | 0.014033 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821                            | 0.000712 | 0.000821 |
| Apartments Mid Rise                    | 0.543088 0.044216 0.209971 | 0.543088 0.044216    | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821                            | 0.000712 | 0.000821 |
| General Office Building                | 0.543088                   | 0.044216             | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.000712 | 0.000821 |
| High Turnover (Sit Down<br>Restaurant) | 0.543088                   | 543088 0.044216 0.20 | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.000712 | 0.000821 |
| Hotel                                  | 0.543088 0.044216          | 0.044216             | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.000712 | 0.000821 |
| Quality Restaurant                     | 0.543088                   | 0.044216             | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.000712 | 0.000821 |
| Regional Shopping Center               | 0.543088                   | 0.044216             | 0.209971 | 0.116369 | 0.014033 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.000712 | 0.000821 |

### 5.0 Energy Detail

Historical Energy Use: N

# 5.1 Mitigation Measures Energy

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

|                            | ROG    | XON           | 8      | S02               | Fugitive<br>PM10 | xhaust<br>PM10 | PM10<br>Total | Fugitive Exhaust<br>PM2.5 PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | Bio- CO2 NBio- CO2 Total CO2 | Total CO2                                | CH4    | NZO                   | C02e           |
|----------------------------|--------|---------------|--------|-------------------|------------------|----------------|---------------|---------------------------------|------------------|----------------|----------|------------------------------|------------------------------------------|--------|-----------------------|----------------|
| Category                   |        |               |        |                   | tons/yr          | /yr            |               |                                 |                  |                |          |                              | MT/yr                                    | lyr.   |                       |                |
| Electricity<br>Mitigated   |        |               |        |                   |                  | 0.0000 0.0000  | 0.000.0       |                                 | 0.0000           | 0.0000         | 0.0000   | 2,512.646<br>5               | 0.0000 0.0000 2,512.646 2,512.646 0.1037 |        | 0.0215 2,521.635<br>6 | 2,521.635<br>6 |
| Electricity<br>Unmitigated |        |               |        |                   |                  | 0.0000         | 0.0000        |                                 | 0.000.0          | 0.0000         | 0.0000   | 2,512.646<br>5               | 2,512.646 2,512.646<br>5 5               | 0.1037 | 0.0215                | 2,521.635<br>6 |
| NaturalGas<br>Mitigated    | 0.1398 | 1.2312 0.7770 | 0.7770 | 7.6200e-<br>003   |                  | 0.0966         | 0.0966        |                                 | 9960.0           | 9960.0         | 0.0000   | 1,383.426<br>7               | 1,383.426 1,383.426<br>7 7               | 0.0265 | 0.0254                | 1,391.647<br>8 |
| NaturalGas<br>Unmitigated  | 0.1398 | 1.2312 0.7770 | 0.7770 | 0 7.6200e-<br>003 |                  | 9960.0         | 9960.0        |                                 | 9960.0           | 0.0966         | 0.0000   | 1,383.426<br>7               | 1,383.426 1,383.426<br>7 7               | 0.0265 | 0.0254                | 1,391.647<br>8 |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Date: 1/12/2021 2:26 PM

5.2 Energy by Land Use - NaturalGas

#### Unmitigated

| 53,573.                    |          | Т                      |                        |                            | Τ                                                    |                  |                       |                             | <b>.</b>        |
|----------------------------|----------|------------------------|------------------------|----------------------------|------------------------------------------------------|------------------|-----------------------|-----------------------------|-----------------|
| CO2e                       |          | 21.9284                | 701.1408               | 25.1468                    | 445.9468                                             | 93.4557          | 99.0993               | 4.9301                      | 1,391.647<br>8  |
| NZO                        |          | 4.0000e-<br>004        | 0.0128                 | 4.6000e-<br>004            | 8.1300e-<br>003                                      | 1.7000e-<br>003  | 1.8100e-<br>003       | 9.0000e-<br>005             | 0.0254          |
| СН4                        | MT/yr    | 4.2000e-<br>004        | 0.0134                 | 4.8000e-<br>004            | 8.5000e-<br>003                                      | 1.7800e-<br>003  | 1.8900e-<br>003       | 9.0000e-<br>005             | 0.0265          |
| Total CO2                  | EW .     | 21.7988                | 686.969                | 24.9983                    | 443.3124                                             | 92.9036          | 98.5139               | 4.9009                      | 1,383.426<br>8  |
| Bio-CO2 NBio-CO2 Total CO2 |          | 21.7988                | 686.989                | 24.9983                    | 443.3124                                             | 92.9036          | 98.5139               | 4.9009                      | 1,383.426<br>8  |
| Bio-CO2                    |          | 0.000.0                | 0.000.0                | 0.0000                     | 0.0000                                               | 0.0000           | 0.000.0               | 0.000                       | 0.0000          |
| PM2.5<br>Total             |          | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003  | 6.8800e-<br>003       | 3.4000e-<br>004             | 0.0966          |
| Exhaust<br>PM2.5           |          | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003  | 6.8800e-<br>003       | 3.4000e-<br>004             | 9960'0          |
| Fugitive<br>PM2.5          |          |                        |                        |                            |                                                      |                  |                       |                             |                 |
| PM10<br>Total              |          | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003  | 6.8800e-<br>003       | 3.4000e-<br>004             | 0.0966          |
| Exhaust<br>PM10            | tons/yr  | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003  | 6.8800e-<br>003       | 3.4000e-<br>004             | 0.0966          |
| Fugitive<br>PM10           | tor      |                        |                        |                            |                                                      | - 3              |                       |                             |                 |
| s05                        |          | 1.2000e-<br>004        | 3.8400e-<br>003        | 1.4000e-<br>004            | 2.4400e-<br>003                                      | 5.1000e-<br>004  | 5.4000e-<br>004       | 3.0000e-<br>005             | 7.6200e-<br>003 |
| တ                          |          | 8.0100e-<br>003        | 0.2561                 | 0.0193                     | 0.3421                                               | 0.0717           | 0.0760                | 3.7800e-<br>003             | 0.777.0         |
| NOx                        |          | 0.0188                 | 0.6018                 | 0.0230                     | 0.4072                                               | 0.0853           | 0.0905                | 4.5000e-<br>003             | 1.2312          |
| ROG                        |          | 2.2000e-<br>003        | 0.0704                 | 2.5300e-<br>003            | 0.0448                                               | 9.3900e-<br>003  | 9.9500e-<br>003       | 5.0000e-<br>004             | 0.1398          |
| NaturalGa<br>s Use         | квтилуг  | 408494                 | 1.30613e<br>+007       | 468450                     | 8.30736e<br>+006                                     | 1.74095e<br>+006 | 1.84608e<br>+006      | 91840                       |                 |
|                            | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit 8.30736e<br>Down Restaurant) +006 | Hotel            | Quality<br>Restaurant | Regional<br>Shopping Center | Total           |

Date: 1/12/2021 2:26 PM Page 33 of 44 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.2 Energy by Land Use - NaturalGas

#### **Mitigated**

|                            |          |                        |                        |                            |                                                      | _               |                       |                             |                 |
|----------------------------|----------|------------------------|------------------------|----------------------------|------------------------------------------------------|-----------------|-----------------------|-----------------------------|-----------------|
| C02e                       |          | 21.9284                | 701.1408               | 25.1468                    | 445.9468                                             | 93.4557         | 99.0993               | 4.9301                      | 1,391.647<br>8  |
| NZO                        |          | 4.0000e-<br>004        | 0.0128                 | 4.6000e-<br>004            | 8.1300e-<br>003                                      | 1.7000e-<br>003 | 1.8100e-<br>003       | 9.0000e-<br>005             | 0.0254          |
| CH4                        | λŷΓ      | 4.2000e-<br>004        | 0.0134                 | 4.8000e-<br>004            | 8.5000e-<br>003                                      | 1.7800e-<br>003 | 1.8900e-<br>003       | 9.0000e-<br>005             | 0.0265          |
| Total CO2                  | MT/yr.   | 21.7988                | 696.969                | 24.9983                    | 443.3124                                             | 92.9036         | 98.5139               | 4.9009                      | 1,383.426<br>8  |
| Bio-CO2 NBio-CO2 Total CO2 |          | 21.7988                | 686.969                | 24.9983                    | 443.3124                                             | 92.9036         | 98.5139               | 4.9009                      | 1,383.426<br>8  |
| Bio-CO2                    |          | 0.0000                 | 0.000.0                | 0.0000                     | 0.0000                                               | 0.0000          | 0.0000                | 0.0000                      | 0.0000          |
| PM2.5<br>Total             |          | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003 | 6.8800e-<br>003       | 3.4000e-<br>004             | 0.0966          |
| Exhaust<br>PM2.5           |          | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003 | 6.8800e-<br>003       | 3.4000e-<br>004             | 0.0966          |
| Fugitive<br>PM2.5          |          |                        |                        |                            | <b></b>                                              |                 |                       |                             |                 |
| PM10<br>Total              |          | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003 | 6.8800e-<br>003       | 3.4000e-<br>004             | 0.0966          |
| Exhaust<br>PM10            | tons/yr  | 1.5200e-<br>003        | 0.0487                 | 1.7500e-<br>003            | 0.0310                                               | 6.4900e-<br>003 | 6.8800e-<br>003       | 3.4000e-<br>004             | 0.0966          |
| Fugitive<br>PM10           | fon      |                        |                        |                            |                                                      |                 |                       |                             |                 |
| S02                        |          | 1.2000e-<br>004        | 3.8400e-<br>003        | 1.4000e-<br>004            | 2.4400e-<br>003                                      | 5.1000e-<br>004 | 5.4000e-<br>004       | 3.0000e-<br>005             | 7.6200e-<br>003 |
| တ                          |          | 8.0100e-<br>003        | 0.2561                 | 0.0193                     | 0.3421                                               | 0.0717          | 0.0760                | 3.7800e-<br>003             | 0.7770          |
| XON                        |          | 0.0188                 | 0.6018                 | 0.0230                     | 0.4072                                               | 0.0853          | 0.0905                | 4.5000e-<br>003             | 1.2312          |
| ROG                        |          | 2.2000e-<br>003        |                        | 2.5300e-<br>003            | 0.0448                                               | 9.3900e-<br>003 | 9.9500e-<br>003       | 5.0000e-<br>004             | 0.1398          |
| NaturalGa<br>s Use         | kBTU/yr  | 408494                 | 1.30613e<br>+007       | 468450                     | 8.30736e                                             | 1.74095e        | 1.84608e<br>+006      | 91840                       |                 |
|                            | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit 8.30736e<br>Down Restaurant) +006 | Hotel           | Quality<br>Restaurant | Regional<br>Shopping Center | Total           |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 34 of 44

Date: 1/12/2021 2:26 PM

5.3 Energy by Land Use - Electricity

**Unmitigated** 

| C02e               |          | 33.8978                            | 1,262.086              | 186.9165                   | 508.1135                              | 175.9672        | 112.9141              | 241.7395                    | 2,521.635<br>6 |
|--------------------|----------|------------------------------------|------------------------|----------------------------|---------------------------------------|-----------------|-----------------------|-----------------------------|----------------|
| N2O                | MT/yr    | 2.9000e-<br>004                    | 0.0107                 | 1.5900e-<br>003            | 4.3200e-<br>003                       | 1.5000e-<br>003 | 9.6000e-<br>004       | 2.0600e-<br>003             | 0.0215         |
| CH4                | LIM)     | 1.3900e-<br>003                    | 0.0519                 | 7.6900e-<br>003            | 0.0209                                | 7.2400e-<br>003 | 4.6500e-<br>003       | 9.9400e-<br>003             | 0.1037         |
| Total CO2          |          | 33.7770                            | 1,257.587<br>9         | 186.2502                   | 506.3022                              | 175.3399        | 112.5116              | 240.8778                    | 2,512.646<br>5 |
| Electricity<br>Use | kwh/yr   | 106010                             | 3.94697e<br>+006       | 584550                     | 1.58904e<br>+006                      | 250308          | 353120                | 756000                      |                |
|                    | Land Use | <sup>∆</sup> partments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | igh Turnover (Sit<br>Jown Restaurant) | Hotel           | Quality<br>Restaurant | Regional<br>Shopping Center | Total          |

Page 35 of 44

Date: 1/12/2021 2:26 PM Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

5.3 Energy by Land Use - Electricity

#### Mitigated

| C02e               |          | 33.8978                | 1,262.086<br>9         | 186.9165                   | 508.1135                               | 175.9672        | 112.9141              | 241.7395                    | 2,521.635<br>6 |
|--------------------|----------|------------------------|------------------------|----------------------------|----------------------------------------|-----------------|-----------------------|-----------------------------|----------------|
| N2O                | MT/yr    | 2.9000e-<br>004        | 0.0107                 | 1.5900e-<br>003            | 4.3200e-<br>003                        | 1.5000e-<br>003 | 9.6000e-<br>004       | 2.0600e-<br>003             | 0.0215         |
| СН4                | LW       | 1.3900e-<br>003        | 0.0519                 | 7.6900e-<br>003            | 0.0209                                 | 7.2400e-<br>003 | 4.6500e-<br>003       | 9.9400e-<br>003             | 0.1037         |
| Total CO2          |          | 33.7770                | 1,257.587<br>9         | 186.2502                   | 506.3022                               | 175.3399        | 112.5116              | 240.8778                    | 2,512.646<br>5 |
| Electricity<br>Use | KWhyr    | 106010                 | 3.94697e<br>+006       | 584550                     | 1.58904e<br>+006                       | 250308          | 353120                | 756000                      |                |
|                    | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel           | Quality<br>Restaurant | Regional<br>Shopping Center | Total          |

### 6.0 Area Detail

### 6.1 Mitigation Measures Area

Page 36 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

| f                                          |                                       |                                                          |                                                  |
|--------------------------------------------|---------------------------------------|----------------------------------------------------------|--------------------------------------------------|
| co2e                                       |                                       | 222.5835                                                 | 222.5835                                         |
|                                            |                                       | 0.0000 220.9670 220.9670 0.0201 3.7400e- 222.5835<br>003 | 220.9670 220.9670 0.0201 3.7400e 222.5835<br>003 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N20         | , , , , , , , , , , , , , , , , , , , | 0.0201                                                   | 0.0201                                           |
| Fotal CO2                                  | V.E.W                                 | 220.9670                                                 | 220.9670                                         |
| Bio-CO2                                    |                                       | 220.9670                                                 | 220.9670                                         |
| Bio-CO2 N                                  |                                       | 0.0000                                                   | 0.000.0                                          |
| PM2.5<br>Total                             |                                       |                                                          | 0.0714                                           |
| 7 W. W                                     |                                       | 0.0714 0.0714                                            | 0.0714                                           |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |                                       |                                                          |                                                  |
| PM10<br>Total                              |                                       | 0.0714                                                   | 0.0714                                           |
| Jugitive Exhaust                           | , i                                   | 0.0714 0.0714                                            | 0.0714 0.0714                                    |
| Fugitive<br>PM10                           | /suat                                 |                                                          |                                                  |
| S02                                        |                                       | 1.6700e-<br>003                                          | 1.6700e-<br>003                                  |
| 00                                         |                                       | 2950 10.3804                                             | 10.3804                                          |
| NOx                                        |                                       | 5.1437 0.2950 10.3804 1.6700e-                           | 5.1437 0.2950 10.3804 1.6700e-<br>003            |
| ROG                                        |                                       | 5.1437                                                   | 5.1437                                           |
|                                            | Category                              | Mitigated                                                | Jnmitigated                                      |
|                                            |                                       |                                                          | 5                                                |

### 6.2 Area by SubCategory

Unmitigated

| C02e                         |             | 0.0000                   | 0.0000                                          | 205.3295        | 17.2540                 | 222.5835        |
|------------------------------|-------------|--------------------------|-------------------------------------------------|-----------------|-------------------------|-----------------|
| N2O                          |             | 0.0000                   | 0.0000                                          | 3.7400e-<br>003 | 0.0000                  | 3.7400e-<br>003 |
| CH4                          | JA,         | 0.0000 0.0000            | 0.0000                                          | 3.9100e-<br>003 | 0.0161                  | 0.0201          |
| Total CO2                    | MT/yr       | 0.000.0                  | 0.0000                                          | 204.1166        | 16.8504                 | 220.9670        |
| Bio- CO2 NBio- CO2 Total CO2 |             | 0.0000                   | 0.0000                                          | 204.1166        | 16.8504                 | 220.9670        |
| Bio-CO2                      |             | 0.0000                   | 0.0000                                          | 0.0000          | 0.0000                  | 0.0000          |
| PM2.5<br>Total               |             | 0.000                    | 0.0000                                          | 0.0143          | 0.0572                  | 0.0714          |
| Exhaust<br>PM2.5             |             | 0.000.0                  | 0.000.0                                         | 0.0143          | 0.0572                  | 0.0714          |
| Fugitive<br>PM2.5            |             |                          | <b>;</b><br> <br> <br> <br> <br> <br> <br> <br> |                 |                         |                 |
| PM10<br>Total                |             | 0.0000                   | 0.000.0                                         | 0.0143          | 0.0572                  | 0.0714          |
| Exhaust<br>PM10              | fons/yr     | 0.000.0                  | 0.000.0                                         | 0.0143          | 0.0572                  | 0.0714          |
| Fugitive<br>PM10             | (ou         |                          |                                                 |                 |                         |                 |
| s02                          |             |                          |                                                 | 1.1200e-<br>003 | 5.4000e-<br>004         | 1.6600e-<br>003 |
| ဝ၁                           |             |                          |                                                 | 0.0750          | 10.3054 5.4000e-<br>004 | 10.3804         |
| XON                          |             |                          |                                                 | 0.1763          | 0.1187                  | 0.2950          |
| ROG                          |             | 0.4137                   | 4.3998                                          | 0.0206          | 0.3096                  | 5.1437          |
|                              | SubCategory | Architectural<br>Coating | Consumer<br>Products                            | Hearth          | Landscaping             | Total           |

Page 37 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

6.2 Area by SubCategory

Mitigated

| The state                    | Eskigi zir 18 |                          |                      |                   | 1               | Г.                      |
|------------------------------|---------------|--------------------------|----------------------|-------------------|-----------------|-------------------------|
| C02e                         |               | 0.0000                   | 0.0000               | 205.3295          | 17.2540         | 222.5835                |
| NZO                          |               | 0.0000                   | 0.0000               | 3.7400e- 2<br>003 | 0.0000          | 3.7400e-<br>003         |
| CH4                          | J.            | 0.0000                   | 0.0000               | 3.9100e-<br>003   | 0.0161          | 0.0201                  |
| Total CO2                    | MT/yr         | 0.0000                   | 0.0000               | 204.1166          | 16.8504         | 220.9670                |
| Bio- CO2 NBio- CO2 Total CO2 |               | 0.000.0                  | 0.000.0              | 204.1166          | 16.8504         | 220.9670                |
| Bio-CO2                      |               | 0.000.0                  | 0.0000               | 0.0000            | 0.0000          | 0.0000                  |
| PM2.5<br>Total               |               | 0.0000                   | 00000                | 0.0143            | 0.0572          | 0.0714                  |
| Exhaust<br>PM2.5             |               | 0.000.0                  | 0.000.0              | 0.0143            | 0.0572          | 0.0714                  |
| Fugitive<br>PM2.5            |               |                          | <br>                 |                   |                 |                         |
| PM10<br>Total:               |               | 0.000.0                  | 0.000.0              | 0.0143            | 0.0572          | 0.0714                  |
| Exhaust<br>PM10              | 3//           | 0.0000                   | 0.0000               | 0.0143            | 0.0572          | 0.0714                  |
| Fugitive<br>PM10             | tons/yr       |                          |                      |                   |                 |                         |
| S02                          |               |                          |                      | 1.1200e-<br>003   | 5.4000e-<br>004 | 1.6600e-<br>003         |
| zos oo                       |               |                          |                      | 0.0750            | 10.3054         | 0.2950 10.3804 1.6600e- |
| NOX                          |               |                          |                      | 0.1763            | 0.1187          | 0.2950                  |
| ROG                          |               | 0.4137                   | 4.3998               | 0.0206            | 0.3096          | 5.1437                  |
|                              | SubCategory   | Architectural<br>Coating | Consumer<br>Products | Hearth            | Landscaping     | Total                   |

### 7.0 Water Detail

## 7.1 Mitigation Measures Water

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

| raylal of Makes and Assault | <del></del> |             |
|-----------------------------|-------------|-------------|
| CO2e                        | 683.7567    | 683.7567    |
| N2O<br>'ýr                  | 0.0755      | 0.0755      |
| CH4                         | 3.0183      | 3.0183      |
| Total CO2 CH4               | 585.8052    | 585.8052    |
| Category                    | Mitigated   | Unmitigated |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Page 39 of 44

Date: 1/12/2021 2:26 PM

7.2 Water by Land Use

#### Unmitigated

| C02e                   |          | 12.6471                 | 493.2363               | 61.6019                    | 62.8482                               | 7.5079                | 13.9663               | 31.9490                      | 683.7567 |
|------------------------|----------|-------------------------|------------------------|----------------------------|---------------------------------------|-----------------------|-----------------------|------------------------------|----------|
| N2O                    | MT/yr    | 1.3400 <b>e-</b><br>003 | 0.0523                 | 6.5900e-<br>003            | 8.8200e-<br>003                       | 1.0300e-<br>003       | 1.9600e-<br>003       | 3.4200 <del>e</del> -<br>003 | 0.0755   |
| СН4                    | W        | 0.0535                  | 2.0867                 | 0.2627                     | 0.3580                                | 0.0416                | 0.0796                | 0.1363                       | 3.0183   |
| Total CO2              |          | 10.9095                 | 425.4719               | 53.0719                    | 51.2702                               | 6.1633                | 11.3934               | 27.5250                      | 585.8052 |
| Indoor/Out<br>door Use | Mgal     | 1.62885 /<br>1.02688    | 63.5252 /<br>40.0485   | 7.99802 /<br>4.90201       | 10.9272 /<br>0.697482                 | 1.26834 /<br>0.140927 | 2.42827 /<br>0.154996 | 4.14806 /<br>2.54236         |          |
|                        | Land Use | Apartments Low<br>Rise  | Apartments Mid<br>Rise | General Office<br>Building | High Tumover (Sit<br>Down Restaurant) | Hotei                 | Quality<br>Restaurant | Regional<br>Shopping Center  | Total    |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

7.2 Water by Land Use

#### Mitigated

| C02e                   |          | 12.6471                | 493.2363               | 61.6019                    | 62.8482                                | 7.5079                | 13.9663               | 31.9490                     | 683,7567 |
|------------------------|----------|------------------------|------------------------|----------------------------|----------------------------------------|-----------------------|-----------------------|-----------------------------|----------|
| NZO                    | MTlyr    | 1.3400e-<br>003        | 0.0523                 | 6.5900e-<br>003            | 8.8200e-<br>003                        | 1.0300e-<br>003       | 1.9600e-<br>003       | 3.4200e-<br>003             | 0.0755   |
| CH4                    | M        | 0.0535                 | 2.0867                 | 0.2627                     | 0.3580                                 | 0.0416                | 0.0796                | 0.1363                      | 3.0183   |
| Total CO2              |          | 10.9095                | 425.4719               | 53.0719                    | 51.2702                                | 6.1633                | 11.3934               | 27.5250                     | 585.8052 |
| Indoor/Out<br>door Use | Mgal     | 1.62885 /<br>1.02688   | 63.5252 /<br>40.0485   | 7.99802 /<br>4.90201       | 10.9272 /<br>0.697482                  | 1.26834 /<br>0.140927 | 2.42827 /<br>0.154996 | 4.14806 /<br>2.54236        |          |
|                        | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel                 | Quality<br>Restaurant | Regional<br>Shopping Center | Total    |

### 8.0 Waste Detail

### 8.1 Mitigation Measures Waste

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

Category/Year

| CO2e        | 514.8354  | 514.8354    |
|-------------|-----------|-------------|
| N2O<br>ATAN | 0.0000    | 0.0000      |
| CH4         | 12.2811   | 12.2811     |
| Total CO2   | 207.8079  | 207.8079    |
|             | Mitigated | Unmitigated |

Page 42 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

8.2 Waste by Land Use

#### Unmitigated

| C02e              |          | 5.7834                 | 225.5513               | 21.0464                    | 215.4430                               | 13.7694 | 3.6712                | 29.5706                     | 514.8354 |
|-------------------|----------|------------------------|------------------------|----------------------------|----------------------------------------|---------|-----------------------|-----------------------------|----------|
| NZO               | MT/yr    | 0.0000                 | 0.0000                 | 0.0000                     | 0.0000                                 | 0.0000  | 0.0000                | 0.0000                      | 0.0000   |
| CH4               | LW.      | 0.1380                 | 5.3804                 | 0.5021                     | 5.1393                                 | 0.3285  | 0.0876                | 0.7054                      | 12.2811  |
| Total CO2         |          | 2.3344                 | 91.0415                | 8.4952                     | 86.9613                                | 5.5579  | 1.4818                | 11.9359                     | 207.8079 |
| Waste<br>Disposed | tons     | 11.5                   | 448.5                  | 41.85                      | 428.4                                  | 27.38   | 7.3                   | 58.8                        |          |
|                   | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel   | Quality<br>Restaurant | Regional<br>Shopping Center | Total    |

Page 43 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

### 8.2 Waste by Land Use

#### Mitigated

| C02e              |          | 5.7834                 | 225.5513               | 21.0464                    | 215.4430                               | 13.7694 | 3.6712                | 29.5706                     | 514.8354 |
|-------------------|----------|------------------------|------------------------|----------------------------|----------------------------------------|---------|-----------------------|-----------------------------|----------|
| N20               | MT/yr    | 0.0000                 | 0.0000                 | 0.0000                     | 0.0000                                 | 0.0000  | 0.0000                | 0.0000                      | 0.0000   |
| CH4               | W        | 0.1380                 | 5.3804                 | 0.5021                     | 5.1393                                 | 0.3285  | 0.0876                | 0.7054                      | 12.2811  |
| Total CO2         |          | 2.3344                 | 91.0415                | 8.4952                     | 86.9613                                | 5.5579  | 1.4818                | 11.9359                     | 207.8079 |
| Waste<br>Disposed | tons     | 11.5                   | 448.5                  | 41.85                      | 428.4                                  | 27.38   | 7.3                   | 58.8                        |          |
|                   | Land Use | Apartments Low<br>Rise | Apartments Mid<br>Rise | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel   | Quality<br>Restaurant | Regional<br>Shopping Center | Total    |

### 9.0 Operational Offroad

|                   | I |
|-------------------|---|
| ad.               | l |
| IΞ                | I |
| ne.               | ı |
|                   | ı |
| Agr X             | l |
| 46.5              | I |
| ŏ                 |   |
| act               |   |
| <del> </del>      |   |
| Ö                 | ľ |
|                   |   |
| 141.54            |   |
|                   |   |
| *                 |   |
| Š                 |   |
| ď                 |   |
| SE                |   |
| ¥                 |   |
|                   |   |
|                   |   |
|                   |   |
|                   |   |
| ğ                 |   |
| ر<br>چ            |   |
| ays               |   |
|                   |   |
| 100000            |   |
| 3.5               |   |
|                   |   |
|                   |   |
|                   |   |
| ) se              |   |
| s/Day             |   |
| ours/Day          |   |
| Hours/Day         |   |
| er Hours/Day      |   |
| mber Hours/Day    |   |
| Nümber: Hours/Day |   |
| Number Hours/Day  |   |
| Number Hours/Day  |   |
| Number: Hours/Day |   |
|                   |   |
|                   |   |
|                   |   |
|                   |   |
|                   |   |
|                   |   |
|                   |   |
| quipment Type     |   |
| Equipment Type    |   |
| Equipment Type    |   |
| Equipment Type    |   |

### 10.0 Stationary Equipment

# Fire Pumps and Emergency Generators

| ı |                 |
|---|-----------------|
|   | уре             |
| ı | el T            |
| ı | Fuel            |
| 1 |                 |
| ı | 14.60           |
|   | 5               |
|   | ad Factor       |
| 1 | DE I            |
| ı | Load            |
| ı | Load Factor     |
| ſ | NA.             |
| l |                 |
| ı | e Power         |
| ı | ج<br>ا          |
| ١ | 2               |
| ١ | Ĭ               |
| I | Ĭ               |
| ŀ |                 |
|   |                 |
| I | a               |
|   | Ğ               |
| ľ | urs/            |
| ı | 욷               |
| ı |                 |
| L | (1995)<br>Ngjar |
| I |                 |
| I |                 |
| ı | Hours/Day       |
| ľ | JS.             |
| ľ | Hours           |
| j |                 |
| ı |                 |
| ŀ |                 |
|   | ber             |
|   | ĕ               |
|   | Ę               |
|   | E               |
|   |                 |
| ŀ | _               |
| I |                 |
|   |                 |
|   |                 |
|   | စ္က             |
|   | ጅ∣              |
|   | pment           |
|   | e<br>E          |
|   | Equipm          |
| ŀ | Ē               |
| 1 |                 |
| ŀ |                 |
| L |                 |
| _ |                 |

Page 44 of 44

Date: 1/12/2021 2:26 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Annual

#### Boilers

| 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| දි.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Ÿ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| ਨੈਂ∣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| <b>⊨</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| မိ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| 5 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| ieat input/rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 255.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| <u>~</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| ĭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| 윤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 8<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Ĕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 5630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| ll Dei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| епшрег                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| машрег                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Namber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Nonne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | it.              |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>ent</u>       |
| e Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>nent</u>      |
| World                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>oment</u>     |
| Notice of the second of the se | lipment          |
| Taylor I Manuagar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | quipment         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Equipment</u> |
| ipinen, ype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d Equipment      |
| dupment ype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q                |
| - Equipment Ape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ned Equipment    |
| Equipment you                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q                |
| Equipment Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q                |
| Pour Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q                |
| edonoment yybe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q                |

Fuel Type

| Г   |        | _   |    |
|-----|--------|-----|----|
| ١.  |        |     |    |
|     |        |     |    |
| 1   |        |     |    |
|     | ~      |     |    |
| ľ   |        |     |    |
|     | Ĺ      |     |    |
| 1   | a      | •   |    |
| -   | 7      | ۲.  |    |
| ٠.  | =      | •   |    |
| ×   | Ł      | ,   |    |
|     | =      |     |    |
| 1   | _      | ٠.  | æ. |
| ١.  | _      | ٠.  |    |
| 1.5 |        |     |    |
| 2   | Α.     |     |    |
| r.  | Nimber |     |    |
|     |        |     |    |
|     |        | 7   |    |
| 13  |        |     |    |
|     | ١.     |     | ÷  |
| г   | 11     | _   |    |
|     | ٧,     |     |    |
|     |        |     |    |
| L   |        | N   |    |
|     |        | 9   |    |
|     |        |     | ď. |
|     | -      | 13  |    |
| К   |        | ٣,  |    |
|     |        | 'n. |    |
|     |        | 15  |    |
| 10  | 51     |     | 1  |
| ١.  |        |     |    |
| ľ   |        |     |    |
| 111 | ď      | ١.  |    |
|     | 7      |     |    |
| ш   | ₹      | -   |    |
| ı٠  | مخ     | •   |    |
| 11  |        | ١.  |    |
|     |        |     | ٠. |
| 13  | 7      | 4   |    |
| 15  | 7      |     |    |
|     | 뽀      |     | 1  |
| 1   | ۶      |     |    |
| ı   | Ħ      | 3   |    |
| ١.  | ≌      | _   |    |
| ľ   | =      |     |    |
| Ľ   | Ħ      | ۷.  |    |
| ١.  | C      |     |    |
| 1   | ш      | J.  |    |
| ٠.  | -      |     |    |
|     |        |     |    |
| ١.  |        |     |    |
|     |        |     |    |

### 11.0 Vegetation

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Page 1 of 35

Date: 1/12/2021 2:29 PM

### Village South Specific Plan (Proposed) Los Angeles-South Coast County, Summer

### 1.0 Project Characteristics

### 1.1 Land Usage

| Land Uses                           | Size   | Metric        | Lot Acreage | Lot Acreage Floor Surface Area Population | Population |
|-------------------------------------|--------|---------------|-------------|-------------------------------------------|------------|
| General Office Building             | 45.00  | 1000sqft      | 1.03        | 45,000.00                                 | 0          |
| High Turnover (Sit Down Restaurant) | 36.00  | 1000sqft      | 0.83        | 36,000.00                                 | 0          |
| Hotel                               | 50.00  | Room          | 1.67        | 72,600.00                                 | 0          |
| Quality Restaurant                  | 8.00   | 1000sqft      | 0.18        | 8,000.00                                  | 0          |
| Apartments Low Rise                 | 25.00  | Dwelling Unit | 1.56        | 25,000.00                                 | 72         |
| Apartments Mid Rise                 | 975.00 | Dwelling Unit | 25.66       | 975,000.00                                | 2789       |
| Regional Shopping Center            | 56.00  | 1000sqft      | 1.29        | 56,000.00                                 | 0          |
|                                     |        |               |             |                                           |            |

# 1.2 Other Project Characteristics

| Freq (Days) 33            | 'ear 2028        |                            | 0.006                      |
|---------------------------|------------------|----------------------------|----------------------------|
| Precipitation Freq (Days) | Operational Year |                            | N2O Intensity<br>(Ib/MWhr) |
| 2.2                       |                  |                            | 0.029                      |
| Wind Speed (m/s)          |                  | ınia Edison                | CH4 Intensity<br>(Ib/MWhr) |
| Urban                     | ത                | Southern California Edison | 702.44                     |
| Urbanization              | Climate Zone     | Utility Company            | CO2 Intensity<br>(Ib/MWhr) |

# 1.3 User Entered Comments & Non-Default Data

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

Construction Phase - See SWAPE comment regarding individual construction phase lengths.

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

**Energy Use** 

Construction Off-road Equipment Mitigation - See SWAPE comment on construction-related mitigation.

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

Trips and VMT - Local hire provision

| New Value     | 0.00              | 0.00              | 0.00          | 0.00          | 10.00            | 10.00            | 10.00            | 10.00            | 10.00            | 10.00            | 6.17            | 3.87           | 1.39           | 79.82           |
|---------------|-------------------|-------------------|---------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|----------------|----------------|-----------------|
| Default Value | 1,019.20          | 1,019.20          | 1.25          | 48.75         | 14.70            | 14.70            | 14.70            | 14.70            | 14.70            | 14.70            | 7.16            | 6.39           | 2.46           | 158.37          |
| Column Name   | FireplaceWoodMass | FireplaceWoodMass | NumberWood    | NumberWood    | WorkerTripLength | WorkerTripLength | WorkerTripLength | WorkerTripLength | WorkerTripLength | WorkerTripLength | ST_TR           | ST_TR          | ST_TR          | ST_TR           |
| Table Name    | tblFireplaces     | tblFireplaces     | tblFireplaces | tblFireplaces | tblTripsAndVMT   | tblTripsAndVMT   | tbITripsAndVMT   | tbITripsAndVMT   | tbITripsAndVMT   | tblTripsAndVMT   | tblVehicleTrips | tblVehideTrips | tblVehideTrips | tblVehicleTrips |

Page 3 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/12/2021 2:29 PM

| 3.75            | 63.99           | 10.74           | 6.16            | 4.18            | 0.69            | 78.27           | 3.20            | 57.65           | 6.39            | 5.83            | 4.13            | 6.41            | 65.80           | 3.84            | 62.64           | 9.43            | 0.00            | 0.00            | 0.00               | 0.00               | 0.00             | 0.00             | 0.00              | 0.00              |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------------------|------------------|------------------|-------------------|-------------------|
| 8.19            | 94.36           | 49.97           | 6.07            | 5.86            | 1.05            | 131.84          | 5.95            | 72.16           | 25.24           | 6.59            | 6.65            | 11.03           | 127.15          | 8.17            | 89.95           | 42.70           | 1.25            | 48.75           | 1.25               | 48.75              | 25.00            | 25.00            | 999.60            | 999.60            |
| ST_TR           | ST_TR           | ST_TR           | SU_TR           | WD_TR           | NumberCatalytic | NumberCatalytic | NumberNoncatalytic | NumberNoncatalytic | WoodstoveDayYear | WoodstoveDayYear | WoodstoveWoodMass | WoodstoveWoodMass |
| tblVehicleTrips | tblWoodstoves   | tblWoodstoves   | tblWoodstoves      | tblWoodstoves      | tblWoodstoves    | tblWoodstoves    | tblWoodstoves     | tblWoodstoves     |

### 2.0 Emissions Summary

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/12/2021 2:29 PM

2.1 Overall Construction (Maximum Daily Emission)

#### **Unmitigated Construction**

|                            | T 5    | _                                                  |                              |                              |                            |                                     |
|----------------------------|--------|----------------------------------------------------|------------------------------|------------------------------|----------------------------|-------------------------------------|
| COZe                       |        | 6,212.103<br>9                                     | 12,518.57<br>07              | 12,174.46<br>15              | 2,331.095<br>6             | 0.0000 12,518.57<br>07              |
| OZN                        |        | 0.0000                                             | 0.0000                       | 0.0000                       | 0.0000                     | 0.0000                              |
| CH4                        | lay    | 1.9475                                             | 1.9485                       | 0.9589                       | 0.7166                     | 1.9485                              |
| Total CO2                  | Ab/day | 6,163.416<br>6                                     | 12,493.44<br>03              | 12,150.48<br>90              | 2,313.180<br>8             | 12,493.44<br>03                     |
| Bio-CO2 NBio-CO2 Total CO2 |        | 0.0000 6,163.416 6,163.416 1.9475 0.0000 6,212.103 | 12,493.44 12,493.44<br>03 03 | 12,150.48 12,150.48<br>90 90 | 2,313.180 2,313.180<br>8 8 | 0.0000 12,493.44 12,493.44<br>03 03 |
| Bio-CO2                    |        | 0.0000                                             | 0.0000                       | 0.0000                       | 0.0000                     | 0000'0                              |
| PM2.5<br>Total             |        | 11.8490                                            | 5.1421                       | 2.5935                       | 0.4621                     | 11.8490                             |
| Exhaust<br>PM2.5           |        | 20.2488 9.9670 1.8820 11.8490                      | 1.5052                       | 0.7136                       | 0.4319                     | 1.8820                              |
| Fugitive<br>PM2.5          |        | 9.9670                                             | 3.6369                       | 1.8799                       | 0.3229                     | 0296.6                              |
| PM10<br>Total              |        | 20.2488                                            | 10.4616                      | 7.7679                       | 1.2875                     | 20.2488                             |
| Exhaust<br>PM10            | lb/daý | 18.2032 2.0456                                     | 1.6361                       | 0.7592                       | 0.4694                     | 2.0456                              |
| Fugitive<br>PM10           | /qı    | 18.2032                                            | 8.8255                       | 7.0088                       | 1.2171                     | 18.2032                             |
| soz                        |        | 0.0636                                             | 0.1240                       | 0.1206                       | 0.0239                     | 0.1240                              |
| O)                         |        | 31.4494                                            | 40.8776                      | 38.7457                      | 14.9642                    | 40.8776                             |
| NOX                        |        | 4.2561 46.4415 31.4494                             | 38.8811                      | 25.7658                      | 9.5478                     | 46.4415                             |
| RoG                        |        | 4.2561                                             | 4.5441                       | 4.1534                       | 237.0219                   | 237.0219                            |
|                            | Year   | 2021                                               | 2022                         | 2023                         | 2024                       | Maximum                             |

Page 5 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

2.1 Overall Construction (Maximum Daily Emission)

#### Mitigated Construction

| CO2e                         |        | 6,212.103<br>9             | 12,518.57<br>07              | 12,174.46<br>15              | 2,331.095      | 12,518.57<br>07              |
|------------------------------|--------|----------------------------|------------------------------|------------------------------|----------------|------------------------------|
| NZO                          |        | 0.0000 6,212.103           | 0.0000                       | 0.0000                       | 0.0000         | 0.0000                       |
| CH4                          | lay    | 1.9475                     | 1.9485                       | 0.9589                       | 0.7166         | 1.9485                       |
| Total CO2                    | lb/đay | 6,163.416<br>6             | 12,493.44<br>03              | 12,150.48<br>90              | 2,313.180<br>8 | 12,493.44<br>03              |
| Bio- CO2 NBio- CO2 Total CO2 |        | 6,163.416 6,163.416<br>6 6 | 12,493.44 12,493.44<br>03 03 | 12,150.48 12,150.48<br>90 90 | 2,313.180      | 12,493.44 12,493.44<br>03 03 |
|                              |        | 0.0000                     | 0.0000                       | 0.0000                       | 0.0000         | 0.0000                       |
| PM2.5<br>Total               |        | 11.8490                    | 5.1421                       | 2.5935                       | 0.4621         | 11.8490                      |
| Exhaust<br>PM2.5             |        | 1.8820                     | 1.5052                       | 0.7136                       | 0.4319         | 1.8820                       |
| Fugitive<br>PM2.5            |        | 9.9670                     | 3.6369                       | 1.8799                       | 0.3229         | 9.9670                       |
| PM10<br>Total                |        | 20.2488                    | 10.4616                      | 7.7679                       | 1.2875         | 20.2488                      |
| Exhaust<br>PM10              | lay    | 2.0456                     | 1.6361                       | 0.7592                       | 0.4694         | 2.0456                       |
| Fugitive<br>PM10             | lb/day | 18.2032                    | 8.8255                       | 7.0088                       | 1.2171         | 18.2032                      |
| CO S02                       |        | 0.0636                     | 0.1240                       | 0.1206                       | 0.0239         | 0.1240                       |
| 8                            |        | 46,4415 31.4494            | 40.8776                      | 38.7457                      | 14.9642        | 40.8776                      |
| ×ON                          |        |                            | 38.8811                      | 25.7658                      | 9.5478         | 46.4415                      |
| ROG                          |        | 4.2561                     | 4.5441                       | 4.1534                       | 237.0219       | 237.0219                     |
|                              | Year   | 2021                       | 2022                         | 2023                         | 2024           | Maximum                      |

| coze                                    | 0.00                 |
|-----------------------------------------|----------------------|
|                                         | o                    |
| NZ0                                     | 0.00                 |
| CH4                                     | 0.00                 |
| Total CO2                               | 0.00                 |
| PN2.5 Bio- CO2 NBio-CO2 Total CO2 Total | 0.00                 |
| Bio- CO2                                | 00'0                 |
| PM2.5<br>Total                          | 0.00                 |
| Exhaust.<br>PM2.5                       | 0.00                 |
| Fugitive<br>PM2.5                       | 0.00                 |
| PM10<br>Total                           | 0.00                 |
| Exhaust<br>PM10                         | 0.00                 |
| Fugitive<br>PM10                        | 0.00                 |
| S02                                     | 0.00                 |
| တ                                       | 0.00                 |
| XÔN                                     | 0.00                 |
| <b>80</b>                               | 0.00                 |
|                                         | Percent<br>Reduction |

Date: 1/12/2021 2:29 PM Page 6 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

2.2 Overall Operational Unmitigated Operational

| i salueda                                    | Political Co |                                                                |                                   | T                            | Ι.                                         |
|----------------------------------------------|--------------|----------------------------------------------------------------|-----------------------------------|------------------------------|--------------------------------------------|
| CO2e                                         |              | 18,259.11<br>92                                                | 8,405.638<br>7                    | 50,361.12<br>08              | 77,025.87<br>86                            |
| NZO                                          |              | 0.3300                                                         | 0.1532                            | <br>                         | 0.4832                                     |
| CH4                                          | <b>Se</b>    | 0.4874                                                         | 0.1602                            | 2.1807                       | 2.8282                                     |
| Total CO2                                    | lb/day       | 18,148.59<br>50                                                | 8,355.983                         | 50,306.60<br>34              | 76,811.18<br>16                            |
| NBio-CO2                                     |              | 18,148.59<br>50                                                | 8,355,983 8,355,983 0.1602<br>2 2 | 50,306.60 50,306.60<br>34 34 | 0.0000 76,811.18 76,811.18 2.8282<br>16 16 |
| Bio-CO2                                      |              | 0.0000 18,148.59 18,148.59 0.4874 0.3300 18,259.11<br>50 50 92 | L                                 |                              | 0.0000                                     |
| PWZ.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total |              |                                                                | 0.5292                            | 12.6070                      | 14.7336                                    |
| Fugitive Exhaust<br>PM2.5 PM2.5              |              | 1.5974 1.5974                                                  | 0.5292                            | 0.3119                       | 2.4385                                     |
| Fugitive<br>PM2.5                            |              |                                                                |                                   | 12.2950                      | 12.2950                                    |
| PM10<br>Total                                |              | 1.5974                                                         | 0.5292                            | 46.2951                      | 48.4217 12.2950                            |
| ugitive Exhaust PM10 PM10                    | lb/day       | 1.5974                                                         | 0.5292                            | 0.3360                       | 2.4626                                     |
| Fugitive<br>PM10                             | /gi          |                                                                |                                   | 45.9592                      | 45.9592                                    |
| S02                                          |              | 0.0944                                                         | 0.0418                            | 0.4917                       | 0.6278                                     |
| 8                                            |              | 88.4430                                                        | 4.2573                            | 45.4304 114.8495 0.4917      | 207.5497                                   |
| NOx                                          |              | 30.5020 15.0496 88.4430 0.0944                                 | 6.7462                            | 45.4304                      | 67.2262                                    |
| ROG                                          |              | 30.5020                                                        | 0.7660                            | 9.8489                       | 41.1168                                    |
|                                              | Category     | Area                                                           | Energy                            | Mobile                       | Total                                      |

#### Mitigated Operational

| Tay Some                   | a von Stere |                                            |                                                 |                              |                           |
|----------------------------|-------------|--------------------------------------------|-------------------------------------------------|------------------------------|---------------------------|
| CO2e                       |             | 18,259.11<br>92                            | 8,405.638                                       | 50,361.12<br>08              | 77,025.87<br>86           |
| NZO                        |             | 0.3300 18,259.1 <sup>°</sup>               | 0.1532                                          |                              | 0.4832                    |
| CH4                        | ay          |                                            | 0.1602                                          | 2.1807                       | 2.8282                    |
| Total CO2                  | lb/day      | 18,148.59<br>50                            | 8,355.983                                       | 50,306.60                    | 76,811.18<br>16           |
| Bio-CO2 NBio-CO2 Total CO2 |             | 0.0000 18,148.59 18,148.59 0.4874<br>50 50 | 8,355.983 8,355.983<br>2 2                      | 50,306.60 50,306.60<br>34 34 | 76,811.18 76,811.18<br>16 |
| Bio-CO2                    |             | 0.000.0                                    |                                                 |                              | 0.0000                    |
| PM2.5<br>Total             |             | 1.5974                                     | 0.5292                                          | 12.6070                      | 14.7336                   |
| Exhaust<br>PM2.5           |             | 1.5974                                     | 0.5292                                          | 0.3119                       | 2.4385                    |
| Fugitive<br>PM2.5          |             |                                            | <b>;</b><br> <br> <br> <br> <br> <br> <br> <br> | 12.2950 0.3119               | 12.2950                   |
| PM10<br>Total              |             | 1.5974                                     | 0.5292                                          | 46.2951                      | 48.4217                   |
| Exhaust<br>PM10            | lay         | 1.5974                                     | 0.5292                                          | 0.3360                       | 2.4626                    |
| Fugitive<br>PM10           | lb/day      |                                            |                                                 | 45.9592                      | 45.9592                   |
| S02                        |             | 0.0944                                     | 0.0418                                          | 0.4917                       | 0.6278                    |
| ဝ                          |             | 88.4430                                    | 4.2573                                          | 114.8495                     | 207.5497                  |
| XON                        |             | 30.5020 15.0496 88.4430                    | 0.7660 6.7462                                   | 45.4304 114.8495 0.4917      | 67.2262 207.5497          |
| ROG                        |             | 30.5020                                    | 0.7660                                          | 9.8489                       | 41.1168                   |
|                            | Category    | Area                                       | Energy                                          | Mobile                       | Total                     |

Page 7 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/12/2021 2:29 PM

| COZe                        | 0.00                 |
|-----------------------------|----------------------|
| NZO                         | 00'0                 |
| CH4                         | 0.00                 |
| Total CO2                   | 0.00                 |
| Bio- CO2 NBio-CO2 Total CO2 | 0.00                 |
| Bio- CO2                    | 0.00                 |
| PM2.5<br>Total              | 0.00                 |
| Exhaust<br>PM2.5            | 0.00                 |
| Fugitive<br>PM2.5           | 0.00                 |
| PM10<br>Total               | 00:0                 |
| Exhaust<br>PM10             | 0.00                 |
| Fugitive<br>PM10            | 0.00                 |
| S02                         | 00.00                |
| 8                           | 00'0                 |
| Š                           | 00'0                 |
| ROG                         | 0.00                 |
|                             | Percent<br>Reduction |

#### 3.0 Construction Detail

#### Construction Phase

| Phase<br>Number | Phase Name            | Phase Type            | Start Date | End Date   | Num Days Num Days<br>Week | Num Days | Phase Description |
|-----------------|-----------------------|-----------------------|------------|------------|---------------------------|----------|-------------------|
| 1               | Demolition            | Demolition            |            | 10/12/2021 | 5                         | 30       |                   |
| 2               | aration               | aration               | 10/13/2021 | 11/9/2021  | 5                         | 20       |                   |
| 3               | Grading               |                       |            | 1/11/2022  | 5                         | 45       |                   |
| 4               | Building Construction | Building Construction | )22        | 12/12/2023 | 5                         | 200      |                   |
| 5               | Paving                | Paving                |            | 1/30/2024  | 5                         | 35       |                   |
| 9               | Architectural Coating | Architectural Coating | 1/31/2024  | 3/19/2024  | 5                         | 35       |                   |

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Date: 1/12/2021 2:29 PM Page 8 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

|                       |                           | Alloquit                                 | Coase Ions | DANCE DE DE | Load Factor |
|-----------------------|---------------------------|------------------------------------------|------------|-------------|-------------|
| Demolition            | Concrete/Industrial Saws  |                                          | 8.00       | 81          | 0.73        |
| Demolition            | Excavators                | () () () () () () () () () () () () () ( | 8.00       | 158         | 0.38        |
| Demolition            | Rubber Tired Dozers       | 2                                        | 8.00       | 247         | 0.40        |
| Site Preparation      | Rubber Tired Dozers       | e                                        | 8.00       | 247         | 0.40        |
| Site Preparation      | Tractors/Loaders/Backhoes |                                          | 8.00       | 1.6         | 0.37        |
| Grading               | Excavators                | 2                                        | 8.00       | 158         | 0.38        |
| Grading               | Graders                   |                                          | 8.00       | 187         | 0.41        |
| Grading               | Rubber Tired Dozers       |                                          | 8.00       | 247         | 0.40        |
| Grading               | Scrapers                  | 2                                        | 8.00       | 367         | 0.48        |
| Grading               | Tractors/Loaders/Backhoes | 2                                        | 8.00       | 26          | 0.37        |
| Building Construction | Cranes                    |                                          | 7.00       | 231         | 0.29        |
| Building Construction | Forklifts                 | r                                        | 8.00       | 68          | 0.20        |
| Building Construction | Generator Sets            | -                                        | 8.00       | 84          | 0.74        |
| Building Construction | Tractors/Loaders/Backhoes | С                                        | 7.00       | 26          | 0.37        |
| Building Construction | Welders                   | —                                        | 8.00       | 46          | 0.45        |
| Paving                | Pavers                    | 2                                        | 8.00       | 130         | 0.42        |
| Paving                | Paving Equipment          | 2                                        | 8.00       | 132         | 0.36        |
| Paving                | Rollers                   | 2                                        | 8.00       | 80          | 0.38        |
| Architectural Coating | Air Compressors           | 1                                        | 6.00       | 78.         | 0.48        |

**Trips and VMT** 

Page 9 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

| Phase Name Offroad Equipment Worker Trip Count Number | Offroad Equipment<br>Count | Worker Trip<br>Number | Vendor Trip<br>Number | Hauling Trip<br>Number | Worker Trip<br>Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Vendor Trip Hauling Trip Worker Vehicle Length Class | Vendor Hauling<br>Vehicle Class Vehicle Clas | Hauling<br>Vehicle Class |
|-------------------------------------------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|------------------------------------------------------|----------------------------------------------|--------------------------|
| Demolition                                            | 9                          | 15.00                 | 00.00                 | 458.00                 | 10.00                 | 06.9                  | 20.00                  | 20.00 LD_Mix                                         | HDT_Mix                                      | HHDT                     |
| Site Preparation                                      | 2                          | 18.00                 | 00.00                 | 0.00                   | 10.00                 | 9.90                  | 20.00 LD_N             | 20.00 LD_Mix                                         | HDT_Mix                                      | HHDT                     |
| Grading                                               | 8                          | 20.00                 | 00.00                 | 0.00                   | 10.00                 | 06.9                  | 20.00 L                | 20.00 LD_Mix                                         | HDT_Mix                                      | HHDT                     |
| Building Construction                                 | 6                          | 801.00                | 143.00                | 0.00                   |                       | 9.90                  | 20.00                  | 20.00 LD_Mix                                         | HDT_Mix                                      | HHDT                     |
| Paving                                                | 9                          | 15.00                 | 00.00                 | 0.00                   | 10.00                 | 06.9                  | 20.00                  | 20.00 LD_Mix                                         | HDT_Mix                                      | HHDT                     |
| Architectural Coating                                 | 1                          | 160.00                | 00.00                 | 00.00                  | 10.00                 | 6.90                  | 20.00                  | 20.00 LD_Mix                                         | HDT_Mix                                      | HHDT                     |

## 3.1 Mitigation Measures Construction

3.2 Demolition - 2021

| CO2e                                       |          | 0.000.0              | 3,774.317                  | 3,774.317<br>4                |
|--------------------------------------------|----------|----------------------|----------------------------|-------------------------------|
| NZO                                        |          |                      | · <b>†</b> ·               |                               |
| CH4                                        | ay       |                      | 1.0549                     | 1.0549                        |
| Total CO2                                  | lb/day   | 0.0000               | 3,747.944<br>9             | 3,747.944 3,747.944<br>9 9    |
| NBio-CO2                                   |          |                      | 3,747.944 3,747.944<br>9 9 | 3,747.944<br>9                |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 Total |          |                      | :<br>:<br>:<br>:           |                               |
| PM2.5<br>Total                             |          | 0.5008               | 1.4411                     | 1.9419                        |
| Exhaust<br>PM2.5                           |          | 0.0000 0.5008        | 1.4411 1.4411              | 1.4411                        |
| Fugitive Exhaust<br>PM2.5 PM2.5            |          | 0.0000 3.3074 0.5008 |                            | 0.5008                        |
| PM10<br>Total                              |          | 3.3074               | 1.5513                     | 4.8588                        |
| Exhaust<br>PM10                            | lb/day   | 0.0000               | 1.5513                     | 1.5513                        |
| Fugitive<br>PM10                           | //ql     | 3.3074               |                            | 3.3074                        |
| co soz                                     |          |                      | 0.0388                     | 0.0388                        |
|                                            |          |                      | 21.5650                    | 21.5650                       |
| XÔN.                                       |          |                      | 3.1651 31.4407 21.5650     | 3.1651 31.4407 21.5650 0.0388 |
| ROG                                        |          |                      | 3.1651                     | 3.1651                        |
|                                            | Category | Fugitive Dust        | Off-Road                   | Total                         |

Date: 1/12/2021 2:29 PM Page 10 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.2 Demolition - 2021

## Unmitigated Construction Off-Site

| un bereggja                          | a and the state of the | I m                               | ,       | 1                             | 1_                         |
|--------------------------------------|------------------------|-----------------------------------|---------|-------------------------------|----------------------------|
| CO2e                                 |                        | 1,294.433<br>7                    | 0.0000  | 117.3678                      | 1,411.801                  |
| NZO                                  |                        |                                   |         | <br> <br> <br> <br> <br> <br> |                            |
| CH4                                  | lay                    | 0.0877                            | 0.0000  | 3.5200e-<br>003               | 0.0912                     |
| Total CO2                            | 1b/day                 | 1,292.241 1,292.241 0.0877<br>3 3 | 0.0000  | 117.2799 3.5200e-<br>003      | 1,409.521 1,409.521<br>2 2 |
| Bio-CO2   NBio-CO2   Total CO2   CH4 |                        | 1,292.241<br>3                    | 0.0000  | 117.2799                      | 1,409.521<br>2             |
| Bio-CO2                              |                        |                                   |         | 1<br>1<br>1<br>1<br>1<br>1    |                            |
| PM2.5<br>Total                       |                        | 0.0852                            | 0.0000  | 0.0311                        | 0.1163                     |
| Exhaust<br>PM2.5                     |                        | 0.0120                            | 0.0000  | 8.8000e-<br>004               | 0.0129                     |
| Fugitive<br>PM2.5                    |                        | 0.0732                            | 0.0000  | 0.0303                        | 0.1034                     |
| PM10<br>Total                        |                        | 0.2795                            | 0.000.0 | 0.1151                        | 0.3946                     |
| Exhaust<br>PM10                      | lb/day                 | 0.0126                            | 0.0000  | 9.5000e-<br>004               | 0.0135                     |
| Fugitive<br>PM10                     | )/GI                   | 0.2669                            | 0.0000  | 0.1141                        | 0.3810                     |
| <b>S</b> 02                          |                        | 0.0119                            | 0.0000  | .2 1.1800e-<br>003            | 0.0131                     |
| CO SO2                               |                        | 0.9602                            | 0.000   | 0.428                         | 1.3884                     |
| ROG NOx                              |                        | 4.0952                            | 0.0000  | 0.0313                        | 4.1265                     |
| <b>20</b> 0                          |                        | 0.1273                            | 0.0000  | 0.0487                        | 0.1760                     |
|                                      | Category               | Hauling                           | Vendor  | Worker                        | Total                      |

| · · · · · · ·                                  |          |                                           |                                         |                                        |
|------------------------------------------------|----------|-------------------------------------------|-----------------------------------------|----------------------------------------|
| CO2e                                           |          | 0.0000                                    | 3,774.317<br>4                          | 3,774.317<br>4                         |
| N20.                                           |          |                                           |                                         |                                        |
| CH4                                            |          |                                           | 1.0549                                  | 1.0549                                 |
| otal CO2                                       | lb/day   | 0.0000                                    | 3,747.944<br>9                          | ,747.944<br>9                          |
| NBio-CO2                                       |          |                                           | 3,747.944 3,747.944<br>9 9              | 3,747.944                              |
| Bio-CO2                                        |          |                                           | 0.0000                                  | 0.0000                                 |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 4/2O CO2e |          | 0.5008                                    | 1.4411                                  | 1.9419 0.0000 3,747.944 3,747.944<br>9 |
| Exhaust<br>PM2.5                               |          | 3.3074 0.0000 3.3074 0.5008 0.0000 0.5008 | 1.4411 1.4411                           | 1.4411                                 |
| Fugitive<br>PM2.5                              |          | 0.5008                                    | <br> <br> <br> <br>                     | 0.5008                                 |
| PM10<br>Total                                  |          | 3.3074                                    | 1.5513                                  | 4.8588                                 |
| Exhaust<br>PM10                                | ay       | 0.0000                                    | 1.5513                                  | 1.5513                                 |
| Fugitive<br>PM10                               | kep/qj   | 3.3074                                    | <br> <br> <br> <br> <br> <br> <br> <br> | 3.3074                                 |
| S02                                            |          |                                           | 0.0388                                  | 0.0388                                 |
| 8                                              |          |                                           | 21.5650                                 | 21.5650                                |
| ROG NOX CO                                     |          |                                           | 3.1651 31.4407 21.5650                  | 3.1651 31.4407 21.5650 0.0388          |
| ROG                                            |          |                                           | 3.1651                                  | 3.1651                                 |
|                                                | Category | Fugitive Dust                             | Off-Road                                | Total                                  |

Date: 1/12/2021 2:29 PM Page 11 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.2 Demolition - 2021

### Mitigated Construction Off-Site

| C02e                             |          | 1,294.433<br>7             | 0.0000 | 117.3678                  | 1,411.801                  |
|----------------------------------|----------|----------------------------|--------|---------------------------|----------------------------|
| N2O                              |          | · · · · ·                  | <br>   |                           |                            |
| CH4                              | lay      | 0.0877                     | 0.0000 | 3.5200e-<br>003           | 0.0912                     |
| Bio- CO2 NBio- CO2 Total CO2 CH4 | lb/day   | 1,292.241 1,292.241 0.0877 | 0.0000 | 17.2799 117.2799 3.5200e- | 1,409.521 1,409.521<br>2 2 |
| NBio-CO2                         |          | 1,292.241<br>3             | 0.0000 | 117.2799                  | 1,409.521<br>2             |
| Bio-CO2                          |          |                            | <br>   |                           |                            |
| PM2.5<br>Total                   |          | 0.0852                     | 00000  | 0.0311                    | 0.1163                     |
| Exhaust<br>PM2.5                 |          | 0.0120                     | 0.0000 | 8.8000e-<br>004           | 0.0129                     |
| Fugitive<br>PM2.5                |          | 0.0732                     | 0.0000 | 0.0303                    | 0.1034                     |
| PM10<br>Total                    |          | 0.2795                     | 0.0000 | 0.1151                    | 0.3946                     |
| Exhaust<br>PM10                  | day      | 0.0126                     | 0.0000 | 9.5000e-<br>004           | 0.0135                     |
| Fugitive<br>PM10                 | lb/day   | 0.2669                     | 0.0000 | .1141                     | 0.3810                     |
| S02                              |          | 0.0119                     | 0.0000 | 1.1800e- 0<br>003         | 0.0131                     |
| တ                                |          | 4.0952 0.9602 0.0119       | 0.000  | 0.4282                    | 1.3884                     |
| NOX                              |          | 4.0952                     | 0.0000 | 0.0313                    | 4.1265                     |
| ROG                              |          | 0.1273                     | 0.0000 | 0.0487                    | 0.1760                     |
|                                  | Category | Hauling                    | Vendor | Worker                    | Total                      |

#### 3.3 Site Preparation - 2021

| 1.1 950                          | autoti w |                              | ' <u>`</u>                         | T.                                 |
|----------------------------------|----------|------------------------------|------------------------------------|------------------------------------|
| N2O CO2e                         |          | 0.0000                       | 3,715.457<br>3                     | 3,715.457<br>3                     |
| NZO                              |          |                              |                                    |                                    |
| CH4                              | lb/ďäy   |                              | 1.1920                             | 1.1920                             |
| Total CO2                        | p/gl     | 0.0000                       | 3,685.656<br>9                     | 3,685.656<br>9                     |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          |                              | 3,685.656 13,685.656 9<br>9        | 3,685.656 3,685.656<br>9           |
| Bio- CO2                         |          |                              |                                    |                                    |
| PM2.5<br>Total                   |          | 9.9307                       | 1.8809                             | 11.8116                            |
| Exhaust<br>PM2.5                 |          | 0.000.0                      | 1.8809                             | 1.8809                             |
| agitive<br>M2.5                  |          | 0.0000 18.0663 9.9307 0.0000 | <br> <br> <br> <br> <br> <br> <br> |                                    |
| PM10<br>Total                    |          | 18.0663                      | 2.0445                             | 20.1107 9.9307                     |
| Exhaust<br>PM10                  | lb/day   | 0.0000                       | 2.0445                             | 2.0445                             |
| Fugitive<br>PM10                 | )/ql     | 18.0663                      |                                    | 18.0663                            |
| S02                              |          |                              | 0.0380                             | 0.0380                             |
| ZOS 00                           |          |                              | 21.1543                            | 21.1543                            |
| ROG NOx                          |          |                              | 40.4971 21.1543                    | 3.8882 40.4971 21.1543 0.0380 18.0 |
| ROG                              |          | • • • •                      | 3.8882                             | 3.8882                             |
|                                  | Category | Fugitive Dust                | Off-Road                           | Total                              |

Page 12 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.3 Site Preparation - 2021
Unmitigated Construction Off-Site

| C 32- N 12                                      | E        |                                                  | ,                          |                             |                   |
|-------------------------------------------------|----------|--------------------------------------------------|----------------------------|-----------------------------|-------------------|
| C02e                                            |          | 0.0000                                           | 0.0000                     | 140.8414                    | 140.8414          |
| NZO                                             |          |                                                  |                            |                             |                   |
| CH4                                             | lb/day   | 0.0000                                           | 0.0000                     | 4.2200e-<br>003             | 4.2200e-<br>003   |
| Total CO2                                       | JQI      | 0.000.0                                          | 0.0000                     | 140.7359 140.7359           | 140.7359 140.7359 |
| NBio- CO2                                       |          | 0.000.0                                          | 0.0000                     | 140.7359                    | 140.7359          |
| PMZ.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total    |          |                                                  | :<br>:<br>:<br>:<br>:<br>: |                             |                   |
| PM2.5<br>Total                                  |          | 0.0000                                           | 0.0000                     | 0.0374                      | 0.0374            |
| Exhaust<br>PM2.5                                |          | 0.0000                                           | 0.0000                     | 1.0500e-<br>003             | 1.0500e-<br>003   |
| Fugitive<br>PM2.5                               |          | 0.0000                                           | 0.0000                     | 0.0363                      | 0.0363            |
| PM10<br>Total                                   |          | 0.0000                                           | 0.0000                     | 0.1381                      | 0.1381            |
| Exhaust<br>PM10                                 | fay      | 0.000.0                                          | 0.0000                     | 1.1400 <del>c-</del><br>003 | 1.1400e-<br>003   |
| Fugitive<br>PM10                                | lb/day   | 0.0000                                           | 0.0000                     | 0.1369                      | 0.1369            |
| S02                                             |          | 0.0000                                           | 0.0000                     | 1.4100e- 0.1<br>003         | 1.4100e- 0.       |
| ဝ၁                                              |          | 0.0000                                           | 0.0000                     | 0.5139                      | 0.5139            |
| ROG NOx CO SO2 Fugitive Exhaust PM10 PM10 Total |          | 0.0000                                           | 0.0000                     | 0.0375                      | 0.0375            |
| ROG                                             |          | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000              | 0.0584                      | 0.0584            |
|                                                 | Category | Hauling                                          | Vendor                     | Worker                      | Total             |

| CO2e                                       |          | 0.0000                                      | 3,715.457                          | 3,715.457<br>3                    |
|--------------------------------------------|----------|---------------------------------------------|------------------------------------|-----------------------------------|
|                                            |          |                                             | က်<br>                             | ę,                                |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O         | 8        |                                             | 1.1920                             | 1.1920                            |
| Total CO2                                  | lb/day   | 0.0000                                      | 3,685,656<br>9                     |                                   |
| NBio-CO2                                   |          |                                             | 0.0000 3,685.656 3,685.656         | 0.0000 3,685.656 3,685.656<br>9 9 |
| Bio-CO2                                    |          |                                             | 0.0000                             | 0.0000                            |
| PM2.5<br>Total                             |          | 9.9307                                      | 1.8809                             | 11.8116                           |
| Exhaust<br>PM2.5                           |          | 18.0663 0.0000 18.0663 9.9307 0.0000 9.9307 | 1.8809                             | 1.8809                            |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |          | 9.9307                                      | <br> <br> <br> <br> <br> <br> <br> | 9.9307                            |
| PM10<br>Total                              |          | 18.0663                                     | 2.0445                             | 20.1107                           |
| Exhaust<br>PM10                            | lay      | 0.000.0                                     | 2.0445                             | 2.0445                            |
| Fugitive<br>PM10                           | lb/day   | 18.0663                                     |                                    | 18.0663                           |
| S02                                        |          |                                             | 0.0380                             | 0.0380                            |
| NOx CO                                     |          |                                             | 21.1543                            | 21.1543                           |
| 357 W. A.S.                                |          |                                             | 3.8882 40.4971 21.1543             | 3.8882 40.4971 21.1543 0.0380     |
| ROG                                        |          |                                             | 3.8882                             | 3.8882                            |
|                                            | Category | Fugitive Dust                               | Off-Road                           | Total                             |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Page 13 of 35

Date: 1/12/2021 2:29 PM

Mitigated Construction Off-Site 3.3 Site Preparation - 2021

| F                                |          |                        |         |                              |                   |
|----------------------------------|----------|------------------------|---------|------------------------------|-------------------|
| C02e                             |          | 0.0000                 | 0.0000  | 140.8414                     | 140.8414          |
| NZO                              |          |                        |         |                              |                   |
| <b>第</b>                         | w.       | 0.000.0                | 0.0000  | 4.2200e-<br>003              | 4.2200e-<br>003   |
| Fotal CO2                        | lb/day   | 0.0000 0.00000 0.00000 | 0.0000  | 140.7359                     |                   |
| VBio-CO2                         |          | 0.000.0                | 0.000.0 | 140.7359 140.7359            | 140.7359 140.7359 |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          |                        |         |                              |                   |
| PM2.5<br>Total                   |          | 0.0000                 | 00000   | 0.0374                       | 0.0374            |
| Exhaust<br>PM2.5                 |          | 0.000.0                | 0.000.0 | 1.0500e-<br>003              | 1.0500e-<br>003   |
| Fugitive<br>PM2.5                |          | 0.0000                 | 0.0000  | 0.0363                       | 0.0363            |
| PM10<br>Total                    |          | 0.0000                 | 0.0000  | 0.1381                       | 0.1381            |
| Exhaust<br>PM10                  | lay      | 0.000.0                | 0.000.0 | 1.1400e-<br>003              | 1.1400e-<br>003   |
| Fugitive<br>PM10                 | ib/day   | 0.000.0                | 0.000.0 | 3.1369                       | 0.1369            |
| S02                              |          | 0.000.0                | 0.0000  | 1.4100 <del>e</del> -<br>003 | 1.4100e-<br>003   |
| co   co                          |          | 0.0000                 | 0.0000  | 0.5139 1.4100e- (            | 0.5139            |
| XON                              |          | 0.0000                 | 0.0000  | 0.0584 0.0375                | 0.0375            |
| ROG                              |          | 0.0000 0.0000 0.0000   | 0.0000  | 0.0584                       | 0.0584            |
|                                  | Category | Hauling                | Vendor  | Worker                       | Total             |

3.4 Grading - 2021

| CO2e                                     |          | 0.0000        | 6,055.613                                | 6,055.613<br>4                                                       |
|------------------------------------------|----------|---------------|------------------------------------------|----------------------------------------------------------------------|
| N20                                      |          |               |                                          |                                                                      |
| CH4                                      | ay       |               | 1.9428                                   | 1.9428                                                               |
| Total CO2                                | lb/day   | 0.000.0       | 6,007.043                                | 6,007.043                                                            |
| Bio- CO2 NBio-CO2 Total CO2 CH4 N2O CO26 |          |               | 6,007.043 6,007.043 1.9428<br>4 <b>4</b> | 6,007.043 6,007.043 1.9428<br>4 4                                    |
| Bio- CO2                                 |          |               |                                          |                                                                      |
| PM2.5<br>Total                           |          | 3.5965        | 1.8265                                   | 5.4230                                                               |
| Exhaust<br>PM2.5                         |          | 0.0000        | 1.8265                                   | 1.8265                                                               |
| Fugitive<br>PM2.5                        |          | 3.5965        |                                          | 3.5965                                                               |
| PM10<br>Total                            |          | 8.6733        | 1.9853                                   | 10.6587                                                              |
| Exhaust<br>PM10                          | lb/day   | 0.0000        | 1.9853                                   | 1.9853                                                               |
| Fugitive Exhaust<br>PM10 PM10            | Ib/c     | 8.6733        |                                          | 8.6733                                                               |
| SO2                                      |          |               | 0.0620                                   | 0.0620                                                               |
| 00                                       |          |               | 30.8785                                  | 30.8785                                                              |
| NOX                                      |          |               | 4.1912 46.3998 30.8785 0.0620            | 4.1912         46.3998         30.8785         0.0620         8.6733 |
| ROG                                      |          |               | 4.1912                                   | 4.1912                                                               |
|                                          | Category | Fugitive Dust | Off-Road                                 | Total                                                                |

Page 14 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2021

Unmitigated Construction Off-Site

| CO2e                                    |           | 0.0000                             | 0.0000               | 156.4904                      | 156.4904                   |
|-----------------------------------------|-----------|------------------------------------|----------------------|-------------------------------|----------------------------|
| OZN NZO                                 |           | ö                                  | 00                   | 156                           | 156                        |
| CH4                                     | <b>Xe</b> | 0.0000                             | 0.0000               | 4.6900e-<br>003               | 4.6900e-<br>003            |
| Total CO2                               | .lb/day   | 0.0000                             | 0.0000               | 156.3732 4.6900e-<br>003      | 156.3732 156.3732 4.6900e- |
| NBio-CO2                                |           | 0.000.0                            | 0.0000               | 156.3732                      | 156.3732                   |
| Bio- CO2 NBio- CO2 Total CO2 CH4        |           |                                    |                      |                               |                            |
| PM2.5<br>Total                          |           | 0.000.0                            | 0.0000               | 0.0415                        | 0.0415                     |
| Exhaust<br>PM2.5                        |           | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000               | 1.1700e-<br>003               | 1.1700e-<br>003            |
| PM10 Fugitive Exhaust Total PM2.5 PM2.5 |           | 0.0000                             | 0.0000               | 0.0404                        | 0.0404                     |
| PM10<br>Total                           |           | 0.0000                             | 0.0000               | 0.1534                        | 0.1534                     |
| Exhaust<br>PM10                         | lb/day    | 0.0000                             | 0.0000               | 1.2700 <del>e-</del><br>003   | 1.2700e-<br>003            |
| Fugitive<br>PM10                        | JP/       | 0.0000                             | 0.0000               | 0.1521                        | 0.1521                     |
| S02                                     |           | 0.0000                             | 0.0000               | 1.5700e-<br>003               | 1.5700e-<br>003            |
| NOx CO SO2                              |           | 0.0000                             | 0.0000               | 0.5710                        | 0.5710                     |
| 1.3747.47                               |           | 0.0000 0.0000 0.0000               | 0.0000 0.0000 0.0000 | 0.0417 0.5710 1.5700e-<br>003 | 0.0417 0.5710 1.5700e-     |
| ROG                                     |           | 0.0000                             | 0.0000               | 0.0649                        | 0.0649                     |
|                                         | Category  | Hauling                            | Vendor               | Worker                        | Total                      |

| Farance -                                              | Maria de la Carta |               |                               |                                          |
|--------------------------------------------------------|-------------------|---------------|-------------------------------|------------------------------------------|
| C02e                                                   |                   | 0.0000        | 6,055.613<br>4                | 6,055.613<br>4                           |
| N20                                                    |                   |               | <br>                          |                                          |
| CH4                                                    |                   |               | 1.9428                        | 1.9428                                   |
| otal CO2                                               | Ibiday            | 0.000.0       | ,007.043<br>4                 | ,007.043<br>4                            |
| Bio-CO2 T                                              |                   |               | 6,007.043 6,007.043<br>4 4    | ,,007.043 6<br>4                         |
| Bio-CO2 NBio-CO2 Total CO2 - CH4                       |                   |               | 00000                         | 0.0000 6,007.043 6,007.043 1.9428<br>4 4 |
| PM2.5<br>Total                                         |                   | 3.5965        | 1.8265                        | 5.4230                                   |
| PM10 Fugitive Exhaust PM2.5<br>Total PM2.5 PM2.5 Total |                   | 0.0000        | 1.8265                        | 1.8265                                   |
| Fugitive<br>PM2.5                                      |                   | 3.5965        |                               | 3.5965                                   |
| PM10<br>Total                                          |                   | 8.6733        | 1.9853                        | 10.6587                                  |
| Exhaust<br>PM10                                        | ay.               | 8.6733 0.0000 | 1.9853                        | 1.9853                                   |
| Fugitive<br>PM10>                                      | /Ib/day           | 8.6733        |                               | 8.6733                                   |
| CO SO2 Fugitive PM10                                   |                   |               | 0.0620                        | 0.0620                                   |
| 03                                                     |                   |               | 30.8785                       | 30.8785                                  |
| ROG NOX                                                |                   |               | 4.1912 46.3998 30.8785 0.0620 | 4.1912 46.3998 30.8785 0.0620            |
| RoG                                                    |                   |               | 4.1912                        | 4.1912                                   |
|                                                        | Category          | Fugitive Dust | Off-Road                      | Total                                    |

Page 15 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2021

Mitigated Construction Off-Site

| CO2e                           |              | 0.0000                             | 0.0000        | 156.4904          | 156.4904                      |
|--------------------------------|--------------|------------------------------------|---------------|-------------------|-------------------------------|
| NZO                            |              |                                    |               |                   |                               |
| CH4                            | Ae           | 0.0000                             | 0.0000        | 4.6900e-<br>003   | 4.6900e-<br>003               |
| Total CO2                      | lb/day       | 0.000                              | 0.0000        | 156.3732          | 156.3732 156.3732             |
| NBio-CO2                       |              | 0.000.0                            | 0.000.0       | 156.3732          | 156.3732                      |
| Bio-CO2 NBio-CO2 Total-CO2 CH4 |              |                                    |               |                   |                               |
| PM2.5<br>Total                 |              | 0.0000                             | 0.0000        | 0.0415            | 0.0415                        |
| Exhaust<br>PM2.5               |              | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000        | 1.1700e-<br>003   | 0.0404 1.1700e-<br>003        |
| Fugitive<br>PM2.5              |              | 0.0000                             | 0.0000        | 0.0404            | 0.0404                        |
| PM10<br>Total                  |              | 0.0000                             | 0.000.0       | 0.1534            | 0.1534                        |
| Exhaust<br>PM10                | lb/day       | 0.0000                             | 0.0000        | 1.2700e-<br>003   | 1.2700e-<br>003               |
| Fugitive<br>PM10               | y <b>q</b> i | 0.0000                             | 0000          | 0.1521            | 0.1521                        |
| co sos                         |              | 0.0000                             | 0.0000        | 1.5700e- 0<br>003 | 1.5700e-<br>003               |
| 8                              |              | 0.0000                             | 0.0000        | 0.5710            | 0.5710                        |
| XON.                           |              | 0.0000 0.0000 0.0000               | 0.0000 0.0000 | 0.0417            | 0.0649 0.0417 0.5710 1.5700e- |
| ROG                            |              | 0.0000                             | 0.0000        | 0.0649            | 0.0649                        |
|                                | Category     | Hauling                            | Vendor        | Worker            | Total                         |

3.4 Grading - 2022

|                                         |          | _             |                                   |                                 |
|-----------------------------------------|----------|---------------|-----------------------------------|---------------------------------|
| C02e                                    |          | 0.0000        | 6,060.015                         | 6,060.015<br>8                  |
| N20                                     |          |               |                                   |                                 |
| CHA                                     | ay       |               | 1.9442                            | 1.9442                          |
| Total CO2                               | lb/day   | 0.000.0       | 6,011.410<br>5                    | 6,011.410<br>5                  |
| NBio-CO2                                |          |               | 6,011.410 6,011.410 1.9442<br>5 5 | 6,011.410 6,011.410 1.9442<br>5 |
| Bio-CO2                                 |          |               |                                   |                                 |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4. |          | 3.5965        | 1.5041                            | 5.1006                          |
| Fugitive Exhaust<br>PM2.5 PM2.5         |          | 0.000.0       | 1.5041                            | 10.3082 3.5965 1.5041           |
| Fugitive<br>PM2.5                       |          | 3.5965        |                                   | 3.5965                          |
| PM10<br>Total                           |          | 8.6733        | 1.6349                            | 10.3082                         |
| Exhaust<br>PM10                         | iay      | 0.0000        | 1.6349                            | 1.6349                          |
| Fugitive<br>PM10                        | lb/day   | 8.6733        |                                   | 8.6733                          |
| S02                                     |          |               | 0.0621                            | 0.0621                          |
| 00                                      |          |               | 29.0415                           | 29.0415                         |
| ROG NOx CO SO2                          |          |               | 3.6248 38.8435 29.0415 0.0621     | 3.6248 38.8435 29.0415 0.0621   |
| ROG                                     |          |               | 3.6248                            | 3.6248                          |
|                                         | Category | Fugitive Dust | Off-Road                          | Total                           |

Date: 1/12/2021 2:29 PM Page 16 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2022
Unmitigated Construction Off-Site

| 13-47-128                                  | 9.1517   | 1                    |                       | ' <u>~</u>        | 1                 |
|--------------------------------------------|----------|----------------------|-----------------------|-------------------|-------------------|
| CO2e                                       |          | 0.0000               | 0.0000                | 150.9813          | 150.9813          |
| N2O                                        |          |                      |                       | •                 |                   |
| CH4                                        | lb/day   | 0.0000               | 0.0000                | 4.2400e-<br>003   | 4.2400e-<br>003   |
| Total CO2                                  | )/q].    | 0.0000 0.0000        | 0.0000                | 150.8754          | 150.8754          |
| Bio-CO2 NBio-CO2 Total CO2 CH4             |          | 0.0000               | 0.0000                | 150.8754          | 150.8754          |
| Bio-CO2                                    |          |                      | :<br>:<br>:<br>:<br>: |                   |                   |
| t PM2.5<br>Total                           |          | 0.0000               | 0.0000                | 0.0415            | 0.0415            |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |          | 0.0000               | 0.000.0               | 1.1300e-<br>003   | 1.1300e-<br>003   |
| Fugitive<br>PM2.5                          |          |                      | 0.0000                | 0.0404            | 0.0404            |
| PM10<br>Total                              |          | 0.0000 0.0000 0.0000 | 0.0000                | 0.1534            | 0.1534            |
| Exhaust<br>PM10                            | lb/day   | 0.0000               | 0.0000                | 1.2300e-<br>003   | 1.2300e-<br>003   |
| Fugitive<br>PM10                           | //GI     | 0.0000               | 0.0000                | 0.1521            | 0.1521            |
| SOS                                        |          | 0.0000               | 0.0000                | 1.5100e- 0<br>003 | 1.5100e- 0<br>003 |
| 00                                         |          | 0.000 0.0000 0.0000  | 0.0000                | 0.5263            | 0.5263            |
| ×ON                                        |          | 0.0000               | 0.0000                | 0.0376            | 0.0376            |
| ROG                                        |          | 0.0000               | 0.0000                | 0.0607            | 0.0607            |
|                                            | Category | Hauling              | Vendor                | Worker            | Total             |

|                                   | <b>.</b> |                      |                                   |                                        |
|-----------------------------------|----------|----------------------|-----------------------------------|----------------------------------------|
| COZe                              |          | 0.0000               | 6,060.015<br>8                    | 6,060.015<br>8                         |
| N2O                               |          |                      |                                   |                                        |
| CH4                               | y        |                      | 1.9442                            | 1.9442                                 |
| otal CO2                          | lb/day   | 0.0000               | 3,011.410<br>5                    | ,,011.410<br>5                         |
| JBio-CO2 T                        |          |                      | 0.0000 6,011.410 6,011.410 1.9442 | 5,011.410                              |
| Bio- CO2 NBio- CO2 Total CO2 CH4. |          |                      | 00000                             | 0.0000 6,011,410 6,011,410 1.9442<br>5 |
| PM2:5<br>Total                    |          | 3.5965               | 1.5041                            | 5.1006                                 |
| Exhaust<br>PM2.5                  |          | 0.0000               | 1.5041                            | 1.5041                                 |
| Fugitive<br>PM2.5                 |          |                      |                                   | 3.5965                                 |
| PM10<br>Total                     |          | 0.0000 8.6733 3.5965 | 1.6349                            | 1.6349 10.3082 3.5965                  |
| Exhaust<br>PM10                   | (ga)     | 0.0000               | 1.6349                            | 1.6349                                 |
| Fugitive<br>PM10                  | lb/day   | 8.6733               |                                   | 8.6733                                 |
| <b>S</b> 02                       |          |                      | 0.0621                            | 0.0621                                 |
| လ                                 |          |                      | 29.0415                           | 29.0415                                |
| ROG NOx                           |          |                      | 3.6248 38.8435 29.0415            | 3.6248 38.8435 29.0415 0.0621          |
| ROG                               |          |                      | 3.6248                            | 3.6248                                 |
|                                   | Category | Fugitive Dust        | Off-Road                          | Total                                  |

Date: 1/12/2021 2:29 PM Page 17 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.4 Grading - 2022
Mitigated Construction Off-Site

| CO2e                           |                                            | 0.0000                 | 0.0000                | 150.9813                              | 150.9813        |
|--------------------------------|--------------------------------------------|------------------------|-----------------------|---------------------------------------|-----------------|
| NZO                            |                                            |                        |                       | • • • • • • • • • • • • • • • • • • • |                 |
| CH4                            | lb/day************************************ | 0.0000                 | 0.0000                | 4.2400e-<br>003                       | 4.2400e-<br>003 |
| Total CO2                      | )/g                                        | 0.0000 0.00000 0.00000 | 0.0000                | 150.8754                              | 150.8754        |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |                                            | 0.000.0                | 0.0000                | 150.8754                              | 150,8754        |
| Bio-CO2                        |                                            |                        | 1<br>1<br>1<br>1<br>1 |                                       |                 |
| f PM2.5<br>Total               |                                            | 0.000.0                | 0.0000                | 0.0415                                | 0.0415          |
| Exhaus<br>PM2.5                |                                            | 0.0000 0.0000 0.0000   | 0.0000                | 1.1300e-<br>003                       | 1.1300e- C      |
| Fugitive<br>PM2.5              |                                            | 0.0000                 | 0.0000                | 0.0404                                | 0.0404          |
| PM10<br>Total                  |                                            | 0.0000                 | 0.000.0               | 0.1534                                | 0.1534          |
| ugitive Exhaust<br>PM10 PM10   | lb/day                                     | 0.0000                 | 0.0000                | 1.2300e- 0<br>003                     | 1,2300e-<br>003 |
| Fugitive<br>PM10               | ygi.                                       | 0.000.0                | 0.0000                | 0.1521                                | 0,1521          |
| S02                            |                                            | 0.0000                 | 0.0000                | 3 1.5100e-<br>003                     | 1.5100e-<br>003 |
| . co soz                       |                                            | 0.0000                 | 0.000(                | 0.5263                                | 0.5263          |
| ROG NOX                        |                                            | 0.0000 0.0000 0.0000   | 0.0000                | 0.0376                                | 0.0376          |
| ROG                            |                                            | 0.0000                 | 0.0000                | 0.0607                                | 0.0607          |
|                                | Category                                   | Hauling                | Vendor                | Worker                                | Total           |

3.5 Building Construction - 2022

| han saasa saasa                               |                                   |                                   |
|-----------------------------------------------|-----------------------------------|-----------------------------------|
| CO2e                                          | 2,569.632<br>2                    | 2,569.632<br>2                    |
| NZO                                           |                                   |                                   |
| CH4                                           | 0.6120                            | 0.6120                            |
| Otal CO2                                      | 2,554.333<br>6                    | ,554.333<br>6                     |
| VBio-CO2                                      | 2,554.333 2,554.333 0.6120<br>6 6 | 2,554.333 2,554.333 0.6120<br>6 6 |
| Bio-CO2 NBio-CO2 Total CO2 CO4 N20 CO2e       |                                   |                                   |
| PM2.5 E                                       | 0.7612                            | 0.7612                            |
| Exhaust<br>PM2.5                              | 0.7612 0.7612                     | 0.7612                            |
| Fugitive Exhaust<br>PM2.5 PM2.5               |                                   |                                   |
| PM10<br>Total                                 | 0.8090                            | 0.8090                            |
| Exhaust<br>PM10                               | 0.8090 0.8090                     | 0.8090                            |
| SO2. Fügifive Exhaust<br>PM10 PM10<br>Ib/day. |                                   |                                   |
| 502.                                          | 0.0269                            | 0.0269                            |
| 8                                             | 16.3634                           | 16.3634                           |
| XON                                           | 15.6156                           | 1.7062 15.6156 16.3634            |
| ROG                                           | 1.7062 15.6156 16.3634 0.0269     | 1.7062                            |
| Category                                      | Off-Road                          | Total                             |
| ប៊ី                                           | JJO                               | _                                 |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Page 18 of 35

Date: 1/12/2021 2:29 PM

3.5 Building Construction - 2022
Unmitigated Construction Off-Site

|                                 | Taria dela r |                             |                            |                          |                               |
|---------------------------------|--------------|-----------------------------|----------------------------|--------------------------|-------------------------------|
| CO2e                            |              | 0.0000                      | 3,902.138<br>4             | 6,046.800<br>0           | 9,948.938<br>4                |
| N2O.                            |              |                             |                            |                          |                               |
| CH4                             | b/day        | 0.000.0                     | 0.2236                     | 0.1697                   | 0.3933                        |
| Bio-CO2 NBio-CO2 Total CO2 CH4  | ) <b>q</b> i | 0.0000 0.0000               | 3,896.548 3,896.548<br>2 2 | 6,042.558 6,042.558<br>5 | 9,939.106 9,939.106<br>7      |
| NBio-CO2                        |              | 0.000.0                     | 3,896.548<br>2             | 6,042.558<br>5           | 9,939.106<br>7                |
| Bio- co2                        |              |                             | <br>                       |                          |                               |
| PM2.5<br>Total                  |              | 0.0000                      | 0.2873                     | 1.6617                   | 1.9490                        |
| Exhaust<br>PM2.5                |              | 0.000.0                     | 0.0237                     | 0.0454                   | 0.0691                        |
| Fugitive Exhaust<br>PM2.5 PM2.5 |              | 0.0000 0.0000 0.0000 0.0000 | 0.2636                     | 1.6163                   | 1.8799                        |
| PM10<br>Total                   |              | 0.0000                      | 0.9404                     | 6.1425                   | 7.0828                        |
| Exhaust<br>PM10                 | ib/day       | 0.0000                      | 0.0248                     | 0.0493                   | 0.0741                        |
| Fugitive<br>PM10                | /qı          |                             | 0.9155                     | 6.0932                   | 7800.7                        |
|                                 |              | 0.0000                      | 0.0364                     | 0.0607                   | 0.0971                        |
| NOx CO SO2                      |              | 0.0000                      | 3.4341                     | 1.5074 21.0801 0.0607    | 24.5142                       |
| XON                             |              | 0.0000 0.0000 0.0000        | 0.4079 13.2032 3.4341      | 1.5074                   | 2.8378 14.7106 24.5142 0.0971 |
| ROG                             |              | 0.0000                      | 0.4079                     | 2.4299                   | 2.8378                        |
|                                 | Category     | Hauling                     | Vendor                     | Worker                   | Total                         |

| N2O CO2e                                             |          | 2,569.632<br>2                           | 2,569.632<br>2                    |
|------------------------------------------------------|----------|------------------------------------------|-----------------------------------|
| NZO                                                  |          |                                          |                                   |
| CH4                                                  | íay      | 0.6120                                   | 0.6120                            |
| Total CO2                                            | )/g      | 2,554.333<br>6                           | 2,554.333<br>6                    |
| Bio-CO2 NBio-CO2 Total CO2 CH4                       |          | 0.0000 2,554.333 2,554.333 0.6120<br>6 6 | 0.0000 2,554.333 2,554.333 0.6120 |
| Bio-CO2                                              |          | 0.0000                                   | 0.0000                            |
| t PM2.5<br>Total                                     |          | 0.7612 0.7612                            | 0.7612                            |
| Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |          | 0.7612                                   | 0.7612                            |
| Fugitive<br>PM2.5                                    |          |                                          |                                   |
| PM10<br>Total                                        |          | 0.8090                                   | 0.8090                            |
| Exhaust<br>PM10                                      | lb/day   | 0.8090                                   | 0608'0                            |
| Fugitive<br>PM10                                     | /qլ      |                                          |                                   |
| S02                                                  |          | 0.0269                                   | 0.0269                            |
| NOx CO                                               |          | 16.3634                                  | 16.3634                           |
| XON                                                  |          | 1.7062 15.6156 16.3634                   | 1.7062 15.6156 16.3634            |
| ROG                                                  |          | 1.7062                                   | 1.7062                            |
|                                                      | Safegory | Off-Road                                 | Total                             |
| Î                                                    | Ü        | Ö                                        |                                   |

Page 19 of 35

Date: 1/12/2021 2:29 PM Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2022 Mitigated Construction Off-Site

| T-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | The American |                                                  |                              |                            |                          |
|-----------------------------------------|--------------|--------------------------------------------------|------------------------------|----------------------------|--------------------------|
| C02e                                    |              | 0.0000                                           | 3,902.138                    | 6,046.800                  | 9,948.938<br>4           |
| NZO                                     |              |                                                  | <br>   <br>   <br>           | #<br>1<br>1<br>1<br>1<br>1 |                          |
| C#4                                     | (ay          | 0.000.0                                          | 0.2236                       | 0.1697                     | 0.3933                   |
| Total CO2                               | lb/day       | 0.0000 0.0000                                    | 3,896.548<br>2               | 6,042.558 6,042.558<br>5 5 | 9,939.106 9,939.106<br>7 |
| Bio-CO2   NBio-CO2   Total-CO2   CH4    |              | 0.000.0                                          | 3,896.548 3,896.548<br>2 2   | 6,042.558<br>5             | 9,939.106<br>7           |
| Bio-CO2                                 |              |                                                  | 1<br>1<br>1<br>1<br>1        | ;<br>;<br>;<br>;           |                          |
| PM2.5<br>Total                          |              | 0.0000                                           | 0.2873                       | 1.6617                     | 1.9490                   |
| Exhaust<br>PM2.5                        |              | 0.0000                                           | 0.0237                       | 0.0454                     | 0.0691                   |
| Fugitive<br>PM2.5                       |              | 0.000.0                                          | 0.2636                       | 1.6163                     | 1.8799                   |
| PM10<br>Total                           |              | 0.000.0                                          | 0.9404                       | 6.1425                     | 7.0828                   |
| Exhaust<br>PM10                         | iay          | 0.0000                                           | 0.0248                       | 0.0493                     | 0.0741                   |
| Fugitive Exhaust PM10 PM10 PM10 Total   | lb/day       | 0.0000                                           | 0.9155                       | 6.0932                     | 7.0087                   |
| S02                                     |              | 0.0000                                           | 0.0364                       | 0.0607                     | 1260.0                   |
| တ                                       |              | 0.0000                                           | 3.4341                       | 21.0801 0.0607             | 24.5142                  |
| ΧÓΝ                                     |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.4079 13.2032 3.4341 0.0364 | 1.5074                     | 2.8378 14.7106 24.5142   |
| ROG                                     |              | 0.000.0                                          | 0.4079                       | 2.4299                     | 2.8378                   |
|                                         | Category     | Hauling                                          | Vendor                       | Worker                     | Total                    |

## 3.5 Building Construction - 2023

| 3        |           |                                                                              |
|----------|-----------|------------------------------------------------------------------------------|
|          | 2,570.406 | 2,570.406<br>1                                                               |
|          |           |                                                                              |
| ÁE:      | 0.6079    | 0.6079                                                                       |
| P/qt     | 2,555.209 | 2,555.209                                                                    |
|          | 2,555.209 | 2,555.209 2,555.209 0.6079<br>9                                              |
|          |           |                                                                              |
|          | 0.6584    | 0.6584                                                                       |
|          | 0.6584    | 0.6584                                                                       |
|          |           |                                                                              |
|          | 7669.0    | 0.6997                                                                       |
| ay       | 0.6997    | 0.6997                                                                       |
| . Ib/d   |           |                                                                              |
|          | 0.0269    | 0.0269                                                                       |
|          | 16.2440   | 16.2440                                                                      |
|          | 14.3849   | 1.5728 14.3849 16.2440 0.0269                                                |
|          | 1.5728    | 1.5728                                                                       |
| Category | Off-Road  | Total                                                                        |
|          | 'Tub'day  | 1.5728 14.3849 16.2440 0.0269 0.6997 0.6997 0.6584 0.6584 7.255.209 2.555.20 |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/12/2021 2:29 PM

3.5 Building Construction - 2023
Unmitigated Construction Off-Site

| 8" "Car 50 5                    |          |                      |                            |                            |                            |
|---------------------------------|----------|----------------------|----------------------------|----------------------------|----------------------------|
| C02e                            |          | 0.0000               | 3,778.830<br>0             | 5,825.225<br>4             | 9,604.055<br>4             |
| N2O                             |          |                      |                            | <br>                       |                            |
| CH.                             | â        | 0.000.0              | 0.1982                     | 0.1529                     | 0.3511                     |
| Total CO2                       | lb/day   | 0.0000 0.0000 0.0000 | 3,773.876<br>2             | 5,821.402<br>8             | 9,595.279<br>0             |
| VBio-CO2                        |          | 0.0000               | 3,773.876 3,773.876<br>2 2 | 5,821.402 5,821.402<br>8 8 | 9,595.279 9,595.279<br>0 0 |
| Bio-CO2 NBio-CO2 Total CO2 CH4  |          |                      |                            |                            | -                          |
| PM2.5<br>Total                  |          | 00000                | 0.2747                     | 1.6604                     | 1.9350                     |
| Exhaust<br>PM2.5                |          | 0.0000 0.0000 0.0000 | 0.0111                     | 0.0441                     | 0.0552                     |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.0000               | 0.2636                     | 1.6163                     | 1.8799                     |
| PM10<br>Total                   |          | 0.0000               | 0.9271                     | 6.1411                     | 7.0682                     |
| Exhaust<br>PM10                 | iay      | 0.0000               | 0.0116                     | 0.0479                     | 0.0595                     |
| CO SO2 Fugitive Exhaust PM10    | lb/day   | 0.0000               | 0.9156                     | 6.0932                     | 7.0088                     |
| soz                             |          | 0.000.0              | 0.0352                     | 0.0584                     | 0.0936                     |
| ဝ၁                              |          | 0.0000               | 3.1014                     | 1.3628 19.4002 0.0584      | 22.5017                    |
| NOX                             |          | 0.0000               | 0.3027 10.0181 3.1014      | 1.3628                     | 2.5807 11.3809 22.5017     |
| ROG                             |          | 0.0000 0.0000 0.0000 | 0.3027                     | 2.2780                     | 2.5807                     |
|                                 | Category | Hauling              | Vendor                     | Worker                     | Total                      |

| CO2e                                          |                              | 2,570.406<br>1                           | 2,570.406<br>1                         |
|-----------------------------------------------|------------------------------|------------------------------------------|----------------------------------------|
| N20                                           |                              |                                          |                                        |
| CH4                                           | \<br>  \a                    | 0.6079                                   | 6/09'0                                 |
| Total CO2                                     | /lp/day                      | 2,555.209<br>9                           | 2,555.209<br>9                         |
| VBio- CO2                                     |                              | 2,555.209                                | 0.0000 2,555.209 2,555.209 0.6079<br>9 |
| Bio- CO2   NBio- CO2   Total CO2   CFH4   N2O |                              | 0.0000 2,555.209 2,555.209 0.6079<br>9 9 | 0.000                                  |
| PM2.5<br>Total                                |                              | 0.6584                                   | 0.6584                                 |
| Exhaust<br>PM2.5                              |                              | 0.6584                                   | 0.6584                                 |
| Fugitive Exhaust<br>PM2.5 PM2.5               |                              |                                          |                                        |
| PM10<br>Total                                 |                              | 0.6997                                   | 0.6997                                 |
| ugitive Exhaust<br>PM10 PM10                  | lay                          | 0.6997                                   | 0.6997                                 |
| Fugitive<br>PM10                              | lb/day                       |                                          |                                        |
| S02                                           |                              | 0.0269                                   | 0.0269                                 |
| CO                                            |                              | 16.2440                                  | 16.2440                                |
| NOX                                           |                              | 1.5728 14.3849 16.2440 0.0269            | 1.5728 14.3849 16.2440 0.0269          |
| RoG                                           |                              | 1.5728                                   | 1.5728                                 |
|                                               | Category                     | Off-Road                                 | Total                                  |
| 36 T                                          | 7 - 20 25 24<br>20 3 2 4 4 5 |                                          |                                        |

Page 21 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.5 Building Construction - 2023

Mitigated Construction Off-Site

| C02e                       |          | 0.0000               | 3,778.830<br>0             | 5,825.225<br>4           | 9,604.055<br>4                |
|----------------------------|----------|----------------------|----------------------------|--------------------------|-------------------------------|
| N2O                        |          |                      |                            |                          |                               |
| CFF4                       | ay       | 0.0000               | 0.1982                     | 0.1529                   | 0.3511                        |
| Total CO2                  | , ib/day | 0.000.0              | 3,773.876<br>2             | 5,821.402<br>8           | 9,595.279<br>0                |
| Bio-CO2 NBio-CO2 Total CO2 |          | 0.000.0              | 3,773.876 3,773.876<br>2 2 | 5,821.402 5,821.402<br>8 | 9,595.279<br>0                |
| Bio-C02                    |          |                      |                            |                          |                               |
| PM2.5<br>Total             |          | 0.000.0              | 0.2747                     | 1.6604                   | 1.9350                        |
| Exhaust<br>PM2.5           |          | 0.000.0              | 0.0111                     | 0.0441                   | 0.0552                        |
| Fugitive<br>PM2.5          |          | 0.0000 0.0000        | 0.2636                     | 1.6163                   | 1.8799                        |
| PM 10<br>Total             |          | 0.0000               | 0.9271                     | 6.1411                   | 7.0682                        |
| Exhaust<br>PM10            | lb/day   | 0.0000               | 0.0116                     | 0.0479                   | 0.0595                        |
| Fugitive<br>PM10           | . Ib/o   | 0.000.0              | 0.9156                     | 6.0932                   | 7.0088                        |
| S02                        |          | 0.0000               | 0.0352                     | 0.0584                   | 0.0936                        |
| ထ                          |          | 0.0000               | 3.1014                     | 1.3628 19.4002           | 22.5017                       |
| NOx                        |          | 0.0000 0.0000 0.0000 | 10.0181                    | 1.3628                   | 2.5807 11.3809 22.5017 0.0936 |
| ROG                        |          | 0.0000               | 0.3027                     | 2.2780                   | 2.5807                        |
|                            | Category | Hauling              | Vendor                     | Worker                   | Total                         |

3.6 Paving - 2023

|                                            | B to the state |                               |                                    |                               |
|--------------------------------------------|----------------|-------------------------------|------------------------------------|-------------------------------|
| CO2e                                       |                | 2,225.433<br>6                | 0.0000                             | 2,225.433<br>6                |
| N2O                                        |                |                               |                                    |                               |
| P. 2                                       | W.             | 0.7140                        |                                    | 0.7140                        |
| Total CO2                                  | lb/day         | 2,207.584                     | 0.0000                             | 2,207.584                     |
| NBio-CO2                                   |                | 2,207.584 2,207.584 0.7140    | <br> <br> <br> <br> <br> <br> <br> | 2,207.584 2,207.584 0.7140    |
| Bio- CO2                                   |                |                               |                                    |                               |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4.    |                | 0.4694                        | 0000.0                             | 0.4694                        |
| Exhaust<br>PM2.5                           |                | 0.4694                        | 0.0000                             | 0.4694                        |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |                |                               | <br> <br>                          |                               |
| PM10<br>Total                              |                | 0.5102                        | 0.0000                             | 0.5102                        |
| Exhaust<br>PM10                            | ay             | 0.5102                        | 0.000.0                            | 0.5102                        |
| Fugitive<br>PM10                           | lb/day         |                               |                                    |                               |
| S02                                        |                | 0.0228                        |                                    | 0.0228                        |
| CO SO2 Fugitive Exhaust<br>PM10 PM10       |                | 14.5842                       |                                    | 14.5842                       |
| ROG NOx                                    |                | 1.0327 10.1917 14.5842 0.0228 |                                    | 1.0327 10.1917 14.5842 0.0228 |
| ROG                                        |                | 1.0327                        | 0.0000                             | 1.0327                        |
|                                            | Category       | Off-Road                      | Paving                             | Total                         |

Date: 1/12/2021 2:29 PM Page 22 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2023 Unmitigated Construction Off-Site

| CO2e                                 |          | 0.0000                      | 0.0000       | 109.0866                   | 109.0866               |
|--------------------------------------|----------|-----------------------------|--------------|----------------------------|------------------------|
| NZO                                  |          |                             |              |                            |                        |
| CH4                                  | 3%       | 0.0000                      | 0.000.0      | 2.8600e-<br>003            | 2.8600e-<br>003        |
| Total CO2                            | lb/day   | 0.000.0                     | 0.0000       | 109.0150                   | 109.0150               |
| VBio- CO2                            |          | 0.0000                      | 0.000.0      | 109.0150 109.0150 2.8600e- | 109.0150 109.0150      |
| Bio-CO2                              |          |                             | L            |                            |                        |
| PMZ.5 Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.000.0                     | 0.000.0      | 0.0311                     | 0.0311                 |
| Fugitive Exhaust<br>PM2.5 PM2.5      |          | 0.0000 0.0000 0.0000 0.0000 | 0.0000       | 8.3000e-<br>004            | 8.3000e-<br>004        |
| Fugitive<br>PM2.5                    |          | 0.0000                      | 0.0000       | 0.0303                     | 0.0303                 |
| PM10<br>Total                        |          | 0.0000                      | 0.0000       | 0.1150                     | 0.1150                 |
| Exhaust<br>PM10                      | lb/daý   | 0.0000                      | 0.0000       | 9.0000e-<br>004            | 9.0000e-<br>004        |
| Fugitive<br>PM10                     | JQI      | 0.000.0                     | 0.0000       | 0.1141                     | 0.1141                 |
| S02                                  |          | 0.0000                      | 0.0000       | 0.3633 1.0900e-<br>003     | 0.3633 1.0900e-<br>003 |
| CO CO                                |          | 0.0000                      | 0.0000       | 0.3633                     | 0.3633                 |
| XON                                  |          | 0.0000 0.0000 0.0000 0.0000 | 0.000 0.0000 | 0.0255                     | 0.0255                 |
| ROG                                  |          | 0.0000                      | 0.0000       | 0.0427                     | 0.0427                 |
|                                      | Category | Hauling                     | Vendor       | Worker                     | Total                  |

| W. 50 - 75                                 | The page of the | T                                 |                                         | r.                                |
|--------------------------------------------|-----------------|-----------------------------------|-----------------------------------------|-----------------------------------|
| CO2e                                       |                 | 2,225.433<br>6                    | 0.0000                                  | 2,225.433<br>6                    |
| NZO                                        |                 |                                   |                                         |                                   |
| CH4                                        | À               | 0.7140                            | † • • • • • • • • • • • • • • • • • • • | 0.7140                            |
| Total CO2                                  | lb/day          | 2,20 <b>7</b> .584                | 0.0000                                  | ,207.584                          |
| VBio-CO2                                   |                 | 0.0000 2,207.584 2,207.584 0.7140 | <br> <br> <br> <br>                     | 0.0000 2,207.584 2,207.584 0.7140 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e    |                 | 0.0000                            |                                         | 0.0000                            |
| PM2.5<br>Total                             |                 | 0.4694                            | 0000.0                                  | 0.4694                            |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |                 | 0.4694                            | 0.000.0                                 | 0.4694                            |
| Fugitive.<br>PM2.5                         |                 |                                   | <br> <br> <br> <br> <br>                |                                   |
| PM10<br>Total                              |                 | 0.5102                            | 0.0000                                  | 0.5102                            |
| Fugitive Exhaust<br>PM10 PM10              | lay             | 0.5102 0.5102                     | 0.0000                                  | 0.5102                            |
| Fugitive<br>PM10                           | ip/qa/          |                                   |                                         |                                   |
| S02                                        |                 | 0.0228                            |                                         | 0.0228                            |
| S                                          |                 | 14.5842                           |                                         | 14.5842                           |
| XON                                        |                 | 1.0327 10.1917 14.5842 0.0228     |                                         | 1.0327 10.1917 14.5842 0.0228     |
| ROG                                        |                 | 1.0327                            | 0.0000                                  | 1.0327                            |
|                                            | Category        | Off-Road                          | Paving                                  | Total                             |

Page 23 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2023
Mitigated Construction Off-Site

| CO2e                           |          | 0.0000               | 0.0000  | 109.0866                 | 109.0866          |
|--------------------------------|----------|----------------------|---------|--------------------------|-------------------|
| N2O C                          |          | °                    | 0       | 10                       | 2                 |
| N                              |          | ļ                    |         | <br>                     |                   |
| CH4                            | lb/day.  | 0.0000               | 0.0000  | 2.8600<br>003            | 2.8600e-<br>003   |
| Total CO2                      | qı       | 0.0000               | 0.0000  | 109.0150 2.8600e-<br>003 | 109.0150          |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.0000 0.0000        | 0.0000  | 109.0150                 | 109.0150 109.0150 |
| Bio- CO2                       |          |                      |         |                          |                   |
| PM2.5.<br>Total                |          | 0.0000               | 0.000.0 | 0.0311                   | 0.0311            |
| Exhaust<br>PM2.5               |          | 0.0000               | 0.0000  | 8.3000e-<br>004          | 8.3000e-<br>004   |
| Fugitive<br>PM2.5              |          | 0.0000               | 0.0000  | 0.0303                   | 0.0303            |
| PM10<br>Total                  |          | 0.0000               | 0.0000  | 0.1150                   | 0.1150            |
| Exhaust<br>PM10                | lb/day   | 0.0000 0.0000        | 0.0000  | 9.0000e-<br>004          | 9.0000e-<br>004   |
| Fugitive<br>PM10               | 1b/      | 0.0000               | 0.0000  | ).1141                   | 0.1141            |
| co soz                         |          | 0.0000               | 0.0000  | 1.0900e- (<br>003        | 1.0900e-<br>003   |
| 14354                          |          | 0.0000               | 0.0000  | 0.3633                   | 0.3633            |
| NOx                            |          | 0.0000 0.0000 0.0000 | 0.0000  | 0.0255                   | 0.0255            |
| ROG                            |          | 0.0000               | 0.0000  | 0.0427                   | 0.0427            |
|                                | Category | Hauling              | Vendor  | Worker                   | Total             |

3.6 Paving - 2024

| Figure 1                                      | Indiction of | /C                                  | 1                             | Lo                           |
|-----------------------------------------------|--------------|-------------------------------------|-------------------------------|------------------------------|
| C02e                                          |              | 2,225.396<br>3                      | 0.0000                        | 2,225.396<br>3               |
| N29 CO2e                                      |              |                                     |                               |                              |
|                                               | , a          | 0.7140                              |                               | 0.7140                       |
| Total CO2                                     | lb/day       | 2,207.547<br>2                      | 0.0000                        | 2,207.547                    |
| NBfo- CO2                                     |              | 2,207.547 2,207.547 0.7140<br>2 2 2 | <br> <br> <br> <br> <br> <br> | 2,207.547 2,207.547<br>2 2   |
| Bio- CO2                                      |              |                                     | •<br>•<br>•<br>•<br>•<br>•    |                              |
| PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4. Total |              | 0.4310                              | 0.000.0                       | 0.4310                       |
| Exhaust<br>PM2.5                              |              | 0.4310                              | 0.0000                        | 0.4310                       |
| Fugitive Exhaust<br>PM2.5 PM2.5               |              |                                     |                               |                              |
| PM10 F<br>Total                               |              | 0.4685                              | 0.0000                        | 0.4685                       |
| Fugitive Exhaust<br>PM10 PM10                 | lay          | 0.4685 0.4685                       | 0.0000                        | 0.4685                       |
| Fugitive<br>PM10                              | lb/day       |                                     |                               |                              |
| S02                                           |              | 0.0228                              |                               | 0.0228                       |
| ငဝ                                            |              | 14.6258                             |                               | 14.6258                      |
| ROG NOX CO                                    |              | 9.5246 14.6258 0.0228               |                               | 0.9882 9.5246 14.6258 0.0228 |
| ROG                                           |              | 0.9882                              | 0.0000                        | 0.9882                       |
|                                               | Category     | Off-Road                            | Paving                        | Total                        |

Page 24 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.6 Paving - 2024
Unmitigated Construction Off-Site

| Table 7                      | <b>.</b> |                      |         |                        |                 |
|------------------------------|----------|----------------------|---------|------------------------|-----------------|
| C02e                         |          | 0.0000               | 0.0000  | 105.6992               | 105.6992        |
| N2O CO2e                     |          |                      |         |                        |                 |
| CH4                          | <u>.</u> | 0.0000               | 0.0000  | 2.6300e-<br>003        | 2.6300e-<br>003 |
| Total CO2                    | lb/day   | 0.0000 0.0000        | 0.000.0 | 105.6336               | 105.6336        |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000               | 0.0000  | 105.6336               | 105.6336        |
| Bio-CO2                      |          |                      |         | <b>L</b>               |                 |
| PM2.5<br>Total               |          | 0000.0               | 0000.0  | 0.0311                 | 0.0311          |
| Exhaust<br>PM2.5             |          | 0.0000               | 0.000.0 | 8.1000e-<br>004        | 8.1000e-<br>004 |
| Fugitive<br>PM2.5            |          | 0.0000 0.0000        | 0.0000  | 0.0303                 | 0.0303          |
| PM10<br>Total                |          | 0.000 0.0000         | 0.000.0 | 0.1150                 | 0.1150          |
| Exhaust<br>PM10              | lay      | 0.000.0              | 0.0000  | 8.8000e-<br>004        | 8.8000e-<br>004 |
| Fugitive<br>PM10             | Ibíday   | 0.0000               | 0.000.0 | 0.1141                 | 0.1141          |
| S02                          |          | 0.0000               | 0.000.0 | 1.0600e-<br>003        | 1.0600e-<br>003 |
| 3. 12.5.13.7                 |          | 0.0000 0.0000 0.0000 | 0.0000  | 0.3384 1.0600e-<br>003 | 0.3384          |
| CO XON                       |          | 0.0000               | 0.0000  | 0.0233                 | 0.0233          |
| ROG                          |          | 0.0000               | 0.0000  | 0.0403                 | 0.0403          |
|                              | Category | Hauling              | Vendor  | Worker                 | Total           |

| gagaga a Sa                     | I of of the | F.:                                      |                                    | 1                                 |
|---------------------------------|-------------|------------------------------------------|------------------------------------|-----------------------------------|
| CO2e                            |             | 2,225.396<br>3                           | 0.0000                             | 2,225.396<br>3                    |
| N20                             |             |                                          |                                    |                                   |
| CH4                             | 33          | 0.7140                                   | ;<br>!<br>!<br>!<br>!<br>!         | 0.7140                            |
| Total CO2                       | lb/day      | 2,207.547<br>2                           | 0.0000                             | 2,207.547                         |
| NBio- CO2                       |             | 2,207.547<br>2                           | <br> <br> <br> <br> <br> <br> <br> | 2,207.547                         |
| Bio-CO2 NBio-CO2 Total CO2      |             | 0.0000 2,207.547 2,207.547 0.7140<br>2 2 |                                    | 0.0000 2,207.547 2,207.547 0.7140 |
| PM2.5<br>Total                  |             | 0.4310 0.4310                            | 0000.0                             | 0.4310                            |
| Exhaust<br>PM2.5                |             | 0.4310                                   | 0.0000                             | 0.4310                            |
| Fugitive Exhaust<br>PM2:5 PM2:5 |             |                                          |                                    |                                   |
| PM10<br>Total                   |             | 0.4685                                   | 0.000.0                            | 0.4685                            |
| Exhaust<br>PM10                 | lay         | 0.4685 0.4685                            | 0.000.0                            | 0.4685                            |
| Fugitive<br>PM10                | lb/day      |                                          |                                    |                                   |
| <b>S</b> 02                     |             | 0.0228                                   |                                    | 0.0228                            |
| CO SO2                          |             | 14.6258                                  |                                    | 14.6258                           |
| ROG NOx                         |             | 0.9882 9.5246 14.6258                    |                                    | 9.5246 14.6258 0.0228             |
| ROG                             |             | 0.9882                                   | 0.0000                             | 0.9882                            |
|                                 | Category    | Off-Road                                 | Paving                             | Total                             |

:EMod.2016.3.2 Page 25 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/12/2021 2:29 PM

3.6 Paving - 2024
Mitigated Construction Off-Site

| To See See To                              | ESSERVE SE |                                                         | ,             |                               | T                          |
|--------------------------------------------|------------|---------------------------------------------------------|---------------|-------------------------------|----------------------------|
| C02e                                       |            | 0.0000                                                  | 0.0000        | 105.6992                      | 105.6992                   |
| NZO                                        |            |                                                         |               |                               |                            |
| CH4                                        | ay         | 0.0000                                                  | 0.0000        | 2.6300e-<br>003               | 2.6300e-<br>003            |
| Total CO2                                  | Ib/day     | 0.0000 0.0000                                           | 0.0000        | 105.6336                      | 105.6336 105.6336 2.6300e- |
| Bio-CO2 NBio-CO2 Total CO2                 |            | 0.0000                                                  | 0.0000        | 105.6336                      | 105.6336                   |
| Bioco2                                     |            |                                                         |               |                               |                            |
| PM2.5<br>Total                             |            | 0.0000                                                  | 0.0000        | 0.0311                        | 0.0311                     |
| Exhaust<br>PM2.5                           |            | 0.000.0                                                 | 0.000.0       | 8.1000e-<br>004               | 8.1000e-<br>004            |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |            | 0.0000                                                  | 0.000.0       | 0.0303                        | 0.0303                     |
|                                            |            | 0.0000                                                  | 0.000.0       | 0.1150                        | 0.1150                     |
| Exhaust<br>PM10                            | lb/day     | 0.0000                                                  | 0.0000        | 8.8000e-<br>004               | 8.8000e-<br>004            |
| Fugitive<br>PM10                           | )(g)       | 0.0000                                                  | 0.0000        | 0.1141                        | 0.1141                     |
| S02                                        |            | 0.0000                                                  | 0.0000        | 1.0600e-<br>003               | 1.0600e-<br>003            |
| လ                                          |            | 0.0000                                                  | 0.0000 0.0000 | 0.0233 0.3384 1.0600e-<br>003 | 0.3384 1.0600e-<br>003     |
| ROG NOx CO SO2 Fugitive                    |            | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 0.0233                        | 0.0233                     |
| ROG                                        |            | 0.0000                                                  | 0.0000        | 0.0403                        | 0.0403                     |
|                                            | Category   | Hauling                                                 | Vendor        | Worker                        | Total                      |

## 3.7 Architectural Coating - 2024

| 5tal CO2 CH4 N2O CO2e                      | lb/day   | 0.0000                     | 81.4481 0.0159 281.8443              | 81.4481 0.0159 281.8443         |
|--------------------------------------------|----------|----------------------------|--------------------------------------|---------------------------------|
| Bio-CO2 NBio-CO2 Total CO2 CH4             |          |                            | 281.4481 281.4481                    | 281.4481 281.4481               |
| PM2.5<br>Total                             |          | 0.0000                     | 0.0609                               | 0.0609                          |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |          | 0.0000                     | 0.0609                               | 0.0609                          |
| Fugitive<br>PM2.5                          |          |                            | <br> -<br> -<br> -<br> -<br> -<br> - |                                 |
| PM10<br>Total                              |          | 0.0000                     | 0.0609                               | 0.0609                          |
| Exhaust<br>PM10                            | lb/day   | 0.0000                     | 0.0609                               | 0.0609                          |
| Fugitive<br>PM10                           | q        |                            |                                      |                                 |
| S02                                        |          |                            | 1.8101 2.9700e-<br>003               | 2.9700e-<br>003                 |
| NOX CO                                     |          |                            | 1.8101                               | 236,5923 1.2188 1.8101 2.9700e- |
| XOX<br>V                                   |          |                            | 0.1808 1.2188                        | 1.2188                          |
| ROG                                        |          | 236.4115                   | 0.1808                               | 236.5923                        |
|                                            | Category | Archit, Coating = 236.4115 | Off-Road                             | Total                           |

Page 26 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.7 Architectural Coating - 2024
Unmitigated Construction Off-Site

| C02e                             |          | 0.0000                      | 0.0000  | 1,127.458                  | 1,127.458                  |
|----------------------------------|----------|-----------------------------|---------|----------------------------|----------------------------|
| N20                              |          |                             |         |                            |                            |
| CH4                              | ay       | 0.0000                      | 0.0000  | 0.0280                     | 0.0280                     |
| Total CO2                        | (b/day   | 0.0000 0.00000 0.00000      | 0.0000  |                            |                            |
| NBio- CO2                        |          | 0.0000                      | 0.0000  | 1,126.758 1,126.758<br>3 3 | 1,126.758 1,126.758<br>3 3 |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          |                             |         |                            |                            |
| PM2.5 B                          |          | 0.000.0                     | 00000   | 0.3315                     | 0.3315                     |
| Exhaust<br>PM2.5                 |          | 0.0000 0.0000 0.0000        | 0.0000  | 8.6800e-<br>003            | 8.6800e-<br>003            |
| Fugitive<br>PM2.5                |          | 0.0000                      | 0.0000  | 0.3229                     | 0.3229                     |
| PM10<br>Total                    |          | 0.0000                      | 0.000.0 | 1.2266                     | 1.2266                     |
| Exhaust<br>PM10                  | lb/day   | 0.0000                      | 0.0000  | 9.4300e-<br>003            | 9.4300e-<br>003            |
| Fugitive<br>PM10                 | )gr      | 0.0000                      | 0.000.0 | 1.2171                     | 1.2171                     |
| 205                              |          | 0.0000                      | 0.0000  | 0.0113                     | 0.0113                     |
| သ                                |          | 0.0000                      | 0.0000  | 3.6098                     | 3.6098                     |
| NOX                              |          | 0.0000                      | 0.0000  | 0.2481                     | 0.4296 0.2481 3.6098       |
| RoG                              |          | 0.0000 0.0000 0.0000 0.0000 | 0.0000  | 0.4296                     | 0.4296                     |
|                                  | Category | Hauling                     | Vendor  | Worker                     | Total                      |

| - 35, 25 A 1.25                | Paris is |                          |                                 |                          |
|--------------------------------|----------|--------------------------|---------------------------------|--------------------------|
| CO2e                           |          | 0.0000                   | 281.8443                        | 281.8443                 |
| NZO                            |          |                          |                                 |                          |
| CH4                            | lay      |                          | 0.0159                          | 0.0159                   |
| Total CO2                      | lb/day   | 0.000                    | 281.4481                        | 281.4481                 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          |                          | 0.0000 281.4481 281.4481 0.0159 | 0.0000 281.4481 281.4481 |
| Bio-CO2                        |          |                          | 0.0000                          | 0.0000                   |
| PM2.5<br>Total                 |          | 0.0000                   | 6090.0                          | 0.0609                   |
| Exhaust<br>PM2.5               |          | 0.000.0                  | 0.0609                          | 6090'0                   |
| Fugitive<br>PM2.5              |          |                          |                                 |                          |
| PM10<br>Total                  |          | 0.000.0                  | 6090.0                          | 6090'0                   |
| Exhaust<br>PM10                | lay      | 0.0000 0.0000            | 0.0609                          | 0.0609                   |
| Fugitive<br>PM10               | lb/day   |                          |                                 |                          |
| S02                            |          |                          | 2.9700e-<br>003                 | 2.9700e-<br>003          |
| 8                              |          |                          | 1.8101                          | 1.8101 2.9700e-          |
| NOX                            |          |                          | 1.2188                          | 236.5923 1.2188          |
| ROG                            |          | 236.4115                 | 0.1808 1.2188 1.8101 2.9700e-   | 236.5923                 |
|                                | Category | Archit. Coating 236.4115 | Off-Road                        | Total                    |

Page 27 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

3.7 Architectural Coating - 2024
Mitigated Construction Off-Site

|                                 | 45 S 34  |                      | :                          | . w                        | ω               |
|---------------------------------|----------|----------------------|----------------------------|----------------------------|-----------------|
| COZe                            |          | 0.0000               | 0.0000                     | 1,127.458                  | 1,127.458<br>3  |
| NZO                             |          |                      |                            | <br>                       |                 |
| СН4                             | ay.      | 0.0000               | 0.0000                     | 0.0280                     | 0.0280          |
| Total CO2                       | kep/ql   | 0.0000 0.0000        | 0.000.0                    | 1,126.758<br>3             | 1,126.758<br>3  |
| Bio- CO2 NBio- CO2 Total CO2    |          | 0.0000               | 0.0000                     | 1,126.758 1,126.758<br>3 3 | 1,126.758       |
|                                 |          |                      | 1<br>1<br>1<br>1<br>1<br>1 | i<br>;<br>;<br>;           |                 |
| PM2.5<br>Total                  |          | 0.000.0              | 0.000.0                    | 0.3315                     | 0.3315          |
| Exhaust<br>PM2.5                |          | 0.000.0              | 0.0000                     | 8.6800e-<br>003            | 8.6800e-<br>003 |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.0000 0.0000        | 0.0000                     | 0.3229                     | 0.3229          |
| PM10<br>Total                   |          | 0.0000               | 0.000.0                    | 1.2266                     | 1.2266          |
| Exhaust<br>PM10                 | lb/day   | 0.0000               | 0.0000                     | 9.4300e-<br>003            | 9.4300e-<br>003 |
| Fugitive<br>PM10                | )QI      | 0.0000               | 0.0000                     | 1.2171                     | 1.2171          |
| S02                             |          | 0.0000               | 0.0000                     | 0.0113                     | 0.0113          |
| ဝ၁                              |          | 0.0000 0.0000 0.0000 | 0.000.0                    | 3.6098                     | 3.6098          |
| XON                             |          | 0.0000               | 0.0000 0.0000              | 0.2481                     | 0.4296 0.2481   |
| ROG                             |          | 0.0000               | 0.0000                     | 0.4296                     | 0.4296          |
|                                 | Category | Hauling              | Vendor                     | Worker                     | Total           |

## 4.0 Operational Detail - Mobile

## 4.1 Mitigation Measures Mobile

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/12/2021 2:29 PM

| Bio- CO2                                               | 50,306.60 50,306.60 2.1807 50,361.12<br>34 34 08 | 50,306.60 50,306.60 2.1807 50,361,12<br>34 34 08 |
|--------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| U. 1985-22 P. 18-18-18-18-18-18-18-18-18-18-18-18-18-1 | 34 34 34 2.1807                                  | 50,306.60 2.1807<br>34                           |
| o- CO2   Total CO2   CH4                               | 34 34 34 34 34 34 34 34 34 34 34 34 34 3         | 50,306.60 2.1807<br>34                           |
| o- CO2 Total CO2                                       | 34 306.60 50,306.60                              | 50,306.60                                        |
| o- coz                                                 | 34                                               | - <b> </b>                                       |
| 8                                                      | ್ಷ                                               | 50,306.60                                        |
| Bio-CO2                                                |                                                  |                                                  |
| PM2.5<br>Total                                         | 12.6070                                          | 12.6070                                          |
| Exhaust<br>PM2.5                                       | 9592 0.3360 46.2951 12.2950 0.3119 12.6070       | .9592 0.3360 46.2951 12.2950 0.3119 12.6070      |
| Fugitive<br>PM2:5                                      | 12.2950                                          | 12.2950                                          |
| PM10<br>Total                                          | 46.2951                                          | 46.2951                                          |
| Exhaust<br>PM10.<br>Jay                                | 0.3360                                           | 0.3360                                           |
| Fugitive<br>PM10                                       | 45.9592                                          | 45.9592                                          |
| S02                                                    | 0.4917                                           | 0.4917                                           |
| 0                                                      | 114.8495                                         | 114.8495                                         |
| 203<br>00                                              | 9.8489 45.4304 114.8495 0.4917 45.               | 9.8489 45.4304 114.8495 0.4917 45.               |
| ROG                                                    | 9.8489                                           | 9.8489                                           |
| Category                                               | Mitigated                                        | Unmitigated                                      |

## 4.2 Trip Summary Information

|                                     | Aver     | Average Daily Trip Rate | ate      | Unmitigated | Mitigated  |
|-------------------------------------|----------|-------------------------|----------|-------------|------------|
| Land Use                            | Weekday  | Saturday                | Sunday   | Annual:VMT  | Annual VMT |
| Apartments Low Rise                 | 145.75   | 154.25                  | 154.00   | 506,227     | 506,227    |
| Apartments Mid Rise                 | 4,026.75 | 3,773.25                | 4075.50  | 13,660,065  | 13,660,065 |
| General Office Building             | 288.45   | 62.55                   | 31.05    | 706,812     | 706,812    |
| High Turnover (Sit Down Restaurant) | 2,368.80 | 2,873.52                | 2817.72  | 3,413,937   | 3,413,937  |
| Hotel                               | 192.00   | 187.50                  | 160.00   | 445,703     | 445,703    |
| Quality Restaurant                  | 501.12   | 511.92                  | 461.20   | 707,488     | 707,488    |
| Regional Shopping Center            | 528.08   | 601.44                  | 357.84   | 1,112,221   | 1,112,221  |
| Total                               | 8,050.95 | 8,164.43                | 8,057.31 | 20,552,452  | 20,552,452 |
|                                     |          |                         |          |             |            |

#### 4.3 Trip Type Information

Page 29 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

|                | þý                                |                     |                     |                         |                         |       |                    |                          |
|----------------|-----------------------------------|---------------------|---------------------|-------------------------|-------------------------|-------|--------------------|--------------------------|
| ж <b>е</b> %   | Pass-by                           | 8                   | 8                   | 4                       | 43                      | 4     | 44                 | 11                       |
| Trip Purpose % | Diverted                          | 11                  | 11.                 | 19                      | 20                      | 38    | 18                 | 35                       |
|                | Primary                           | 98                  | 98                  | 77                      | 37                      | 28    | 88                 | 54                       |
|                | H-W or C-W H-S or C-C H-O or C-NW | 40.60               | 40.60               | 19.00                   | 19.00                   | 19.00 | 19.00              | 19.00                    |
| , Iпр %        | H-S or C-C                        | 19.20               | 19.20               | 48.00                   | 72.50                   | 61.60 | 69.00              | 64.70                    |
|                | H-W or C-W                        | 40.20               | 40.20               | 33.00                   | 8.50                    | 19.40 | 12.00              | 16.30                    |
|                | or C-C H-O or C-NW                | 8.70                | 8.70                | 9.90                    | 6.90                    | 9.90  | 6.90               | 9.90                     |
| Miles          | H-S or C-C                        | 5.90                | 5.90                | 8.40                    | 8.40                    | 8.40  | 8.40               | 8.40                     |
|                | H-W or C-W H-S                    | 14.70               | 14.70               | 16.60                   | 16.60                   | 16.60 | 16.60              | 16.60                    |
|                | Land Use                          | Apartments Low Rise | Apartments Mid Rise | General Office Building | High Turnover (Sit Down | Hotel | Quality Restaurant | Regional Shopping Center |

#### 4.4 Fleet Mix

|          | •        |                                                                                                                      |          |          |          |          |          |          |          |                            |                        |                        |                                        |
|----------|----------|----------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------------------------|------------------------|------------------------|----------------------------------------|
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971                   | 0.044216               | 0.543088               | Regional Shopping Center               |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971                   | 0.044216               | 0.543088 0.            | Quality Restaurant                     |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971                   | 0.044216               | 0.543088               | Hotel                                  |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971                   | 0.044216               | 0.543088               | High Turnover (Sit Down<br>Restaurant) |
| 0.000821 | 0.000712 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.209971                   | 0.543088 0.044216 0.20 | 0.543088               | General Office Building                |
| 0.000821 | 0.000712 | 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821                            | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 0.543088 0.044216 0.209971 | 0.044216               | 0.543088               | Apartments Mid Rise                    |
| 0.000821 | 0.000712 | 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821                            | 0.001817 | 0.002613 | 0.033577 | 0.021166 | 0.006332 | 0.014033 | 0.116369 | 9971                       | 0.044216               | 0.543088 0.044216 0.20 | Apartments Low Rise                    |
| MH       | SINS     | LHD1 LHD2 MHD HHD OBUS UBUS MCY SBUS                                                                                 | SNBN     | SNBO     | ННО      | MHD      | LHD2     | LHD1     | MDV      |                            | LDA LDT1 LDT2          | LDA                    | Land Use                               |

#### 5.0 Energy Detail

Historical Energy Use: N

## 5.1 Mitigation Measures Energy

Page 30 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Date: 1/12/2021 2:29 PM

|                           | ROG    | 13/1/20/2003                | NOX CO               | S02    | Fugitive<br>PM10 | Fugitive Exhaust PM10 PM10 | PM10<br>Total | PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 | · Exhaust<br>· PM2.5 | PM2.5<br>Total | Bio-CO2          | NBio- CO2      | Bio-CO2 NBio-CO2 Total CO2 CH4 N2O                     | CH4    | N20    | CO2e           |
|---------------------------|--------|-----------------------------|----------------------|--------|------------------|----------------------------|---------------|--------------------------------------------|----------------------|----------------|------------------|----------------|--------------------------------------------------------|--------|--------|----------------|
| Category                  |        |                             |                      |        | JP/c             | //day                      |               |                                            |                      |                |                  |                | lb/di                                                  | l de   |        |                |
| NaturalGas<br>Mitigated   | 0.7660 | 0.7660 6.7462 4.2573 0.0418 | 4.2573               | 0.0418 |                  | 0.5292 0.5292              | 0.5292        |                                            | 0.5292 0.5292        | 0.5292         |                  | 8,355.983<br>2 | 8,355,983 8,355,983 0.1602 0.1532 8,405.638            | 0.1602 | 0.1532 | 8,405.638<br>7 |
| NaturalGas<br>Unmitigated | 0.7660 | 0.7660 6.7462 4.2573 0.0418 | 6.7462 4.2573 0.0418 | 0.0418 |                  | 0.5292                     | 0.5292        |                                            | 0.5292               | 0.5292         | ;<br>;<br>;<br>; | 8,355.983<br>2 | 8,355,983 8,355,983 0.1602 0.1532 8,405.638<br>2 2 2 7 | 0.1602 | 0.1532 | 8,405.638      |

Date: 1/12/2021 2:29 PM Page 31 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

5.2 Energy by Land Use - NaturalGas

#### Unmitigated

|                                        | NaturalGa<br>s Use | ROG             | NOX    | <u></u> | S02             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Fotal   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio-CO2               | NBio- CO2      | Bio-CO2 NBio-CO2 Total CO2 | CH4             | NZO             | C02e           |
|----------------------------------------|--------------------|-----------------|--------|---------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|-----------------------|----------------|----------------------------|-----------------|-----------------|----------------|
| Land Use                               | квти/уг            |                 |        |         |                 | lb/day           | tay             |                 |                   |                  |                 |                       |                | lb/day                     | lay             |                 |                |
| Apartments Low<br>Rise                 | 1119.16            | 0.0121          | 0.1031 | 0.0439  | 6.6000e-<br>004 |                  | 8.3400e-<br>003 | 8.3400e-<br>003 |                   | 8.3400e-<br>003  | 8.3400e-<br>003 |                       | 131.6662       | 131.6662                   | 2.5200e-<br>003 | 2.4100e-<br>003 | 132.4486       |
| Apartments Mid<br>Rise                 | 35784.3            | 0.3859          | 3.2978 | 1.4033  | 0.0211          |                  | 0.2666          | 0.2666          |                   | 0.2666           | 0.2666          |                       | 4,209.916<br>4 | 4,209.916                  | 0.0807          | 0.0772          | 4,234.933<br>9 |
| General Office<br>Building             | 1283.42            | 0.0138          | 0.1258 | 0.1057  | 7.5000e-<br>004 |                  | 9.5600e-<br>003 | 9.5600e-<br>003 |                   | 9.5600e-<br>003  | 9.5600e-<br>003 | 1<br>1<br>1<br>1<br>1 | 150.9911       | 150.9911                   | 2.8900e-<br>003 | 2.7700e-<br>003 | 151.8884       |
| High Turnover (Sit<br>Down Restaurant) | 22759.9            | 0.2455          | 2.2314 | 1.8743  | 0.0134          |                  | 0.1696          | 0.1696          |                   | 0.1696           | 0.1696          | <br>                  | 2,677.634      | 2,677.634<br>2             | 0.0513          | 0.0491          | 2,693.546      |
| Hotel                                  | 4769.72            | 0.0514          | 0.4676 | 0.3928  | 2.8100e-<br>003 |                  | 0.0355          | 0.0355          |                   | 0.0355           | 0.0355          |                       | 561.1436       | 561.1436                   | 0.0108          | 0.0103          | 564.4782       |
| Quality<br>Restaurant                  | 5057.75            | 0.0545          | 0.4959 | 0.4165  | 2.9800e-<br>003 |                  | 0.0377          | 0.0377          |                   | 0.0377           | 0.0377          | 1<br>1<br>1<br>1<br>1 | 595.0298       | 595.0298                   | 0.0114          | 0.0109          | 598.5658       |
| Regional<br>Shopping Center            | 251.616            | 2.7100e-<br>003 | 0.0247 | 0.0207  | 1.5000e-<br>004 |                  | 1.8700e-<br>003 | 1.8700e-<br>003 |                   | 1.8700e-<br>003  | 1.8700e-<br>003 |                       | 29.6019        | 29.6019                    | 5.7000e-<br>004 | 5.4000e-<br>004 | 29.7778        |
| Total                                  |                    | 0.7660          | 6.7463 | 4.2573  | 0.0418          |                  | 0.5292          | 0.5292          |                   | 0.5292           | 0.5292          |                       | 8,355.983<br>2 | 8,355.983<br>2             | 0.1602          | 0.1532          | 8,405.638<br>7 |

Page 32 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

5.2 Energy by Land Use - NaturalGas

Mitigated

| COZe                       |             | 132.4486               | 4,234.933<br>9                 | 151.8884                   | 2,693.546         | 564.4782              | 598.5658              | 29.7778                     | 8,405.638<br>7 |
|----------------------------|-------------|------------------------|--------------------------------|----------------------------|-------------------|-----------------------|-----------------------|-----------------------------|----------------|
| NZO                        |             | 2.4100e-<br>003        | 0.0772                         | 2.7700e-<br>003            | 0.0491            | 0.0103                | 0.0109                | 5.4000e-<br>004             | 0.1532         |
| CH4                        | lb/day      | 2.5200e-<br>003        | 0.0807                         | 2.8900e-<br>003            | 0.0513            | 0.0108                | 0.0114                | 5.7000e-<br>004             | 0.1602         |
| Total CO2                  | )BI         | 131.6662 131.6662      | 4,209.916 4,209.916<br>4 4     | 150.9911                   | 2,677.634<br>2    | 561.1436              | 595.0298              | 29.6019                     | 8,355.983<br>2 |
| Bio-CO2 NBio-CO2 Total CO2 |             | 131.6662               | 4,209.916<br>4                 | 150.9911                   | 2,677.634<br>2    | 561.1436              | 595.0298              | 29.6019                     | 8,355.983<br>2 |
| Bio-CO2                    |             |                        | <br>                           | <br>                       |                   | 1<br>1<br>1<br>1<br>1 | <br>                  |                             |                |
| PM2.5<br>Total             |             | 8.3400e-<br>003        | 0.2666                         | 9.5600e-<br>003            | 0.1696            | 0.0355                | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Exhaust<br>PM2.5           |             | 8.3400e-<br>003        | 0.2666                         | 9.5600e-<br>003            | 0.1696            | 0.0355                | 0.0377                | 1.8700 <del>e-</del><br>003 | 0.5292         |
| Fugitive<br>PM2.5          |             |                        |                                |                            |                   |                       |                       |                             |                |
| PIM10<br>Total             |             | 8.3400e-<br>003        | 0.2666                         | 9.5600e-<br>003            | 0.1696            | 0.0355                | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Exhaust<br>PM10            | lb/day      | 8.3400e-<br>003        | 0.2666                         | 9.5600e-<br>003            | 0.1696            | 0.0355                | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Fugitive<br>PM10           | <b>/9</b> 1 |                        |                                |                            |                   |                       |                       |                             |                |
| S02                        |             | 6.6000e-<br>004        | 0.0211                         | 7.5000e-<br>004            | 0.0134            | 2.8100e-<br>003       | 2.9800e-<br>003       | 1.5000e-<br>004             | 0.0418         |
| 00                         |             | 0.0439                 | 1.4033                         | 0.1057                     | 1.8743            | 0.3928                | 0.4165                | 0.0207                      | 4.2573         |
| ×ON                        |             | 0.1031                 | 3.2978                         | 0.1258                     | 2.2314            | 0.4676                | 0.4959                | 0.0247                      | 6.7463         |
| ROG                        |             | 0.0121                 | 0.3859                         | 0.0138                     | 0.2455            | 0.0514                | 0.0545                | 2.7100 <del>c.</del><br>003 | 0.7660         |
| NaturalGa<br>s Use         | kBTU/yr     | 1.11916                | 35.7843                        | 1.28342                    | 22.7599           | 4.76972               | 5.05775               | 0.251616                    |                |
|                            | Land Use    | Apartments Low<br>Rise | Apartments Mid<br>Ris <b>e</b> | General Office<br>Building | er (Sit<br>urant) | Hotel                 | Quality<br>Restaurant | Regional<br>Shopping Center | Total          |

6.0 Area Detail

6.1 Mitigation Measures Area

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

Page 33 of 35

Date: 1/12/2021 2:29 PM

1.5974 1.5974 0.0000 18,148.59 18,148.59 0.4874 0.3300 18,259.11 50 50 0.3300 18,259.11 CO2e NZO 0.0000 18,148.59 18,148.59 0.4874 50 50 CH4 lb/day Total CO2 NBio-CO2 Bio-CO2 1.5974 PM2.5 Total 1.5974 Exhaust PM2.5 Fugitive PM2.5 1.5974 PIM10 Total 1.5974 1.5974 Exhaust PM10 1.5974 lb/day Fugitive PM10 Unmitigated 30.5020 15.0496 88.4430 0.0944 15.0496 88.4430 0.0944 . S02 ္ပ χοΝ 30.5020 ROG Mitigated Category

6.2 Area by SubCategory

Unmitigated

| Tale transfer              | Kanada sa sa |                          | _                                  |                                            |                 |                              |
|----------------------------|--------------|--------------------------|------------------------------------|--------------------------------------------|-----------------|------------------------------|
| CO2e                       |              | 0.0000                   | 0.0000                             | 18,106.96<br>50                            | 152.1542        | 18,259.11<br>92              |
| NZO                        |              |                          |                                    | 0.3300                                     |                 | 0.3300                       |
| CH4                        | λe           |                          |                                    | 0.3450                                     | 0.1424          | 0.4874                       |
| Total CO2                  | lb/day       | 0.000.0                  | 0.0000                             | 18,000.00<br>00                            | 148.5950        | 18,148.59<br>50              |
| NBio- CO2                  |              |                          |                                    | 18,000.00 18,000.00<br>00 00               | 148.5950        | 18,148.59 18,148.59<br>50 50 |
| Bio-CO2 NBio-CO2 Total CO2 |              |                          | 1<br>1<br>1<br>1                   | 0.0000                                     |                 | 0.000                        |
| PM2.5<br>Total             |              | 0000.0                   | 0.000                              | 1.1400                                     | 0.4574          | 1.5974                       |
| Exhaust<br>PM2.5           |              | 0.000.0                  | 0.000.0                            | 1.1400                                     | 0.4574          | 1.5974                       |
| Fugitive<br>PM2.5          |              |                          | <br> <br> <br> <br> <br> <br> <br> | <b>;</b><br> <br> <br> <br> <br> <br> <br> |                 |                              |
| PM10<br>Total              |              | 0.000.0                  | 0.0000                             | 1.1400                                     | 0.4574          | 1.5974                       |
| Exhaust<br>PM10            | lay          | 0.0000                   | 0.0000                             | 1.1400                                     | 0.4574          | 1.5974                       |
| Fugitive<br>PM10           | lb/day       |                          |                                    |                                            |                 |                              |
| S02                        |              |                          |                                    | 0.0900                                     | 4.3600e-<br>003 | 0.0944                       |
| ဝ၁                         |              |                          |                                    | 6.0000                                     | 82.4430         | 88.4430                      |
| XON                        |              |                          |                                    | 14.1000                                    | 0.9496          | 15.0496                      |
| ROG                        |              | 2.2670                   | 24.1085                            | 1.6500                                     | 2.4766          | 30.5020                      |
|                            | SubCategory  | Architectural<br>Coating | Consumer<br>Products               | Hearth                                     | Landscaping     | Total                        |

Page 34 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

6.2 Area by SubCategory

Mitigated

|                                | Same.       | Ι –                      | :                     | : 9                           |                            | <b>I</b> -      |
|--------------------------------|-------------|--------------------------|-----------------------|-------------------------------|----------------------------|-----------------|
| COZe                           |             | 0.0000                   | 0.0000                | 18,106.96<br>50               | 152.1542                   | 18,259.11<br>92 |
| NZO                            |             |                          |                       | 0.3300                        |                            | 0.3300          |
| CH4                            | jay.        |                          |                       | 0.3450                        | 0.1424                     | 0.4874          |
| Total CO2                      | (lb/day     | 0.0000                   | 0.000.0               | 18,000.00                     | 148.5950                   | 18,148.59<br>50 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |             |                          |                       | 18,000.00 18,000.00<br>00 00  | 148.5950                   | 18,148.59<br>50 |
| Bio-CO2                        |             |                          | 1<br>1<br>1<br>1<br>1 | 0.0000                        | 1<br>1<br>1<br>1<br>1<br>1 | 0.000.0         |
| PM2.5<br>Total                 |             | 0.0000                   | 0.0000                | 1.1400                        | 0.4574                     | 1.5974          |
| Exhaust<br>PM2.5               |             | 0.0000                   | 0.0000                | 1.1400                        | 0.4574                     | 1.5974          |
| Fugitive<br>PM2.5              |             |                          |                       | <br> <br> <br> <br> <br> <br> |                            |                 |
| PM10<br>Total                  |             | 0.0000                   | 0.0000                | 1.1400                        | 0.4574                     | 1.5974          |
| Exhaust<br>PM10                | lb/day      | 0.000.0                  | 0.0000                | 1.1400                        | 0.4574                     | 1.5974          |
| Fugitive<br>PM10               | )QI         |                          |                       |                               |                            |                 |
| SO2 Fu                         |             |                          |                       | 0.0900                        | 4.3600e-<br>003            | 0.0944          |
| ဝ၁                             |             |                          |                       | 6.0000                        | 82.4430                    | 88.4430         |
| XON                            |             |                          |                       | 14.1000 6.0000                | 0.9496                     | 30.5020 15.0496 |
| ROG                            |             | 2.2670                   | 24.1085               | 1.6500                        | 2.4766                     | 30.5020         |
|                                | SubCategory | Architectural<br>Coating | Consumer<br>Products  | Hearth                        | Landscaping                | Total           |

#### 7.0 Water Detail

## 7.1 Mitigation Measures Water

#### 8.0 Waste Detail

## 8.1 Mitigation Measures Waste

#### 9.0 Operational Offroad

| 201         |
|-------------|
| စ္          |
| 출           |
| 펄           |
| ഥ           |
|             |
|             |
| actor       |
| Load Fact   |
| paq         |
| Los         |
| 50 m        |
|             |
| ъ.          |
| orse Power  |
| e l         |
|             |
| -           |
|             |
| A P         |
|             |
| ear         |
| ξ           |
| Days/Ye     |
|             |
|             |
|             |
| Day         |
| ۱ ۸         |
| rs/Day      |
| /3 · [      |
| 운           |
|             |
|             |
|             |
| ŭ.          |
| pe          |
| Ę I         |
|             |
|             |
|             |
|             |
|             |
|             |
| уре         |
| ⊢ ا<br>خ    |
| ipment Type |
| quipmer     |
| Equip       |
|             |
|             |
|             |
| , etc       |

## 10.0 Stationary Equipment

Page 35 of 35

Date: 1/12/2021 2:29 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Summer

## Fire Pumps and Emergency Generators

| Equipment Type Hours/Day Hours/Year Horse Power Eactor Fuel Type |
|------------------------------------------------------------------|
| Boilers                                                          |
| Equipment Type: Heat Input/Day Heat Input/Day Equipment Type     |
| User Defined Equipment                                           |

#### 11.0 Vegetation

Number

Equipment Type

Page 1 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

#### Village South Specific Plan (Proposed) Los Angeles-South Coast County, Winter

## 1.0 Project Characteristics

#### 1.1 Land Usage

| Land Uses                           | Size   | Metric        | Lot Acreage | Floor Surface Area | Population |
|-------------------------------------|--------|---------------|-------------|--------------------|------------|
| General Office Building             | 45.00  | 1000sqft      | 1.03        | 45,000.00          | 0          |
| High Turnover (Sit Down Restaurant) | 36.00  | 1000sqft      | 0.83        | 36,000.00          | 0          |
| Hotel                               | 20.00  | Room          | 1.67        | 72,600.00          | 0          |
| Quality Restaurant                  | 8.00   | 1000sqft      | 0.18        | 8,000.00           | 0          |
| Apartments Low Rise                 | 25.00  | Dwelling Unit | 1.56        | 25,000.00          | 72         |
| Apartments Mid Rise                 | 975.00 | Dwelling Unit | 25.66       | 975,000.00         | 2789       |
| Regional Shopping Center            | 56.00  | 1000sqft      | 1.29        | 56,000.00          | 0          |
|                                     |        |               |             |                    |            |

## 1.2 Other Project Characteristics

| Orbanization               | Urban                      | Wind Speed (m/s)           | 7.7   | Precipitation Freq (Days)  | 33    |
|----------------------------|----------------------------|----------------------------|-------|----------------------------|-------|
| Climate Zone               | ത                          |                            |       | Operational Year           | 2028  |
| Utility Company            | Southern California Edison | <b>-</b>                   |       |                            |       |
| CO2 Intensity<br>(Ib/MWhr) | 702.44                     | CH4 Intensity<br>(Ib/MWhr) | 0.029 | N2O Intensity<br>(Ib/MWhr) | 0.006 |

# 1.3 User Entered Comments & Non-Default Data

Date: 1/12/2021 2:30 PM Page 2 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Project Characteristics - Consistent with the DEIR's model.

Land Use - See SWAPE comment regarding residential and retail land uses.

Construction Phase - See SWAPE comment regarding individual construction phase lengths.

Demolition - Consistent with the DEIR's model. See SWAPE comment regarding demolition.

Vehicle Trips - Saturday trips consistent with the DEIR's model. See SWAPE comment regarding weekday and Sunday trips.

Woodstoves - Woodstoves and wood-burning fireplaces consistent with the DEIR's model. See SWAPE comment regarding gas fireplaces.

Energy Use -

Construction Off-road Equipment Mitigation - See SWAPE comment on construction-related mitigation.

Area Mitigation - See SWAPE comment regarding operational mitigation measures.

Water Mitigation - See SWAPE comment regarding operational mitigation measures.

Trips and VMT - Local hire provision

| Table.Name      | Column Name       | Default Value | New Value |
|-----------------|-------------------|---------------|-----------|
| tblFireplaces   | FireplaceWoodMass | 1,019.20      |           |
| tblFireplaces   | FireplaceWoodMass | 1,019.20      | 0.00      |
| tblFireplaces   | NumberWood        | 1.25          | 0.00      |
| tblFireplaces   | NumberWood        | 48.75         | 0.00      |
| tblTripsAndVMT  | WorkerTripLength  | 14.70         | 10.00     |
| tblTripsAndVMT  | WorkerTripLength  | 14.70         | 10.00     |
| tbiTripsAndVMT  | WorkerTripLength  | 14.70         | 10.00     |
| tbiTripsAndVMT  | WorkerTripLength  | 14.70         | 10.00     |
| tblTripsAndVMT  | WorkerTripLength  | 14.70         | 10.00     |
| tblTripsAndVMT  | WorkerTripLength  | 14.70         | 10.00     |
| tblVehideTrips  | ST_TR             | 7.16          | 6.17      |
| tblVehideTrips  | ST_TR             | 6:39          | 3.87      |
| tbl/ehicleTrips | ST_TR             | 2.46          | 1.39      |
| tblVehicleTrips | ST_TR             | 158.37        | 79.82     |

.3.2 Page 3 of 35 Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/12/2021 2:30 PM

| 3.75            | 63.99           | 10.74           | 6.16            | 4.18            | 69.0            | 78.27          | 3.20            | 57.65           | 6.39            | 5.83            | 4.13            | 6.41            | 65.80           | 3.84            | 62.64           | 9.43            | 0.00            | 0.00            | 0.00               | 00.0               | 00.0             | 0.00             | 0.00              | 0.00              |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------------------|------------------|------------------|-------------------|-------------------|
| 8.19            | 94.36           | 49.97           | 6.07            | 5.86            | 1.05            | 131.84         | 5.95            | 72.16           | 25.24           | 6.59            | 6.65            | 11.03           | 127.15          | 8.17            | 89.95           | 42.70           | 1.25            | 48.75           | 1.25               | 48.75              | 25.00            | 25.00            | 09.666            | 09.666            |
| ST_TR           | ST_TR           | ST_TR           | SU_TR           | SU_TR           | SU_TR           | SU_TR          | SU_TR           | SU_TR           | SU_TR           | WD_TR           | NumberCatalytic | NumberCatalytic | NumberNoncatalytic | NumberNoncatalytic | WoodstoveDayYear | WoodstoveDayYear | WoodstoveWoodMass | WoodstoveWoodMass |
| tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehideTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tblVehicleTrips | tbIVehicleTrips | tblVehicleTrips | tbIVehicleTrips | tbIVehicleTrips | tblVehicleTrips | tblWoodstoves   | tblWoodstoves   | tblWoodstoves      | tblWoodstoves      | tblWoodstoves    | tblWoodstoves    | tblWoodstoves     | tblWoodstoves     |

## 2.0 Emissions Summary

Page 4 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.1 Overall Construction (Maximum Daily Emission)

**Unmitigated Construction** 

| CO2e                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,203.018<br>6                    | 12,060.60<br>13              | 11,734.44<br>97              | 2,324.962<br>7 | 12,060.60<br>13  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|------------------------------|----------------|------------------|
| NZO                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                            | 0.0000                       | 0.0000                       | 0.0000         | 0.000            |
| СН4                          | (b/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9472                            | 1.9482                       | 0.9617                       | 0.7164         | 1.9482           |
| Total CO2                    | )/QI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,154.337<br>7                    | 12,035.34 12,035.34<br>40 40 | 11,710.40 11,710.40<br>80 80 | 2,307.051<br>7 | 12,035.34<br>40  |
| Bio- CO2 NBio- CO2 Total CO2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000 6,154.337 6,154.337 1.9472 | 12,035.34<br>40              | 11,710.40<br>80              | 2,307.051<br>7 | 12,035.34<br>40  |
| Bio- CO2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                            | 0.0000                       | 0.0000                       | 0.0000         | 0.000            |
| PM2.5<br>Total               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.8490                           | 5.1421                       | 2.5940                       | 0.4621         | 11.8490          |
| Exhaust<br>PM2.5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.9670 1.8820 11.8490             | 1.5052                       | 0.7142                       | 0.4319         | 1.8820           |
| Fugitive<br>PM2.5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.9670                            | 3.6369                       | 1.8799                       | 0.3229         | 9.9670           |
| PM10<br>Total                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.2488                           | 10.4616                      | 7.7685                       | 1.2875         | 20.2488          |
| Exhaust<br>PM10              | fay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.2032 2.0456                     | 1.6361                       | 0.7598                       | 0.4694         | 2.0456           |
| Fugitive<br>PM10             | lb/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.2032                           | 8.8255                       | 7.0088                       | 1.2171         | 18.2032          |
| S02                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0635                            | 0.1195                       | 0.1162                       | 0.0238         | 0.1195           |
| o: .                         | , in the second | 31.4068                           | 39.6338                      | 37.5031                      | 14.9372        | 39.6338          |
| NOX                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2621 46.4460 31.4068 0.0635     | 38.8851                      | 25.8648                      | 9.5503         | 237.0656 46.4460 |
| ROG                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2621                            | 4.7966                       | 4.3939                       | 237.0656       | 237.0656         |
|                              | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021                              | 2022                         | 2023                         | 2024           | Maximum          |

Date: 1/12/2021 2:30 PM Page 5 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.1 Overall Construction (Maximum Daily Emission)

### Mitigated Construction

| CO2e                         |         | 6,203.018<br>6                    | 12,060.60<br>13 | 11,734.44<br>97 | 2,324.962                | 12,060.60<br>13              |
|------------------------------|---------|-----------------------------------|-----------------|-----------------|--------------------------|------------------------------|
| NZO                          |         | 0.0000 6,203.018<br>6             | 0.0000          | 0.0000          | 0.0000                   | 0.0000                       |
| CH4                          | -lb/day | 1.9472                            | 1.9482          | 0.9617          | 0.7164                   | 1.9482                       |
| Total CO2                    | /gl     | 6,154.337<br>7                    | 12,035.34<br>40 | 11,710.40 (     | 2,307.051 2,307.051<br>7 | 12,035.34 12,035.34<br>40 40 |
| Bio- CO2 NBio- CO2 Total CO2 |         | 0.0000 6,154.337 6,154.337 1.9472 | 12,035.34<br>40 | 11,710.40<br>80 | 2,307.051<br>7           | 12,035.34<br>40              |
| Bio-CO2                      |         | 0.0000                            | 0000.0          | 0.000           | 0.000                    | 0.0000                       |
| PM2.5<br>Total               |         | 11.8490                           | 5.1421          | 2.5940          | 0.4621                   | 11.8490                      |
| Exhaust<br>PM2:5             |         | 1.8820                            | 1.5052          | 0.7142          | 0.4319                   | 1.8820                       |
| Fugitive<br>PM2.5            |         | 9.9670                            | 3.6369          | 1.8799          | 0.3229                   | 0/96'6                       |
| PM10<br>Total                |         | 20.2488                           | 10.4616         | 7.7685          | 1.2875                   | 20.2488                      |
| Exhaust<br>PM10              | lb/day  | 2.0456                            | 1.6361          | 0.7598          | 0.4694                   | 2.0456                       |
| Fugitive<br>PM10             | /QI     | 18.2032                           | 8.8255          | 7.0088          | 1.2171                   | 18.2032                      |
| 205                          |         | 0.0635                            | 0.1195          | 0.1162          | 0.0238                   | 0.1195                       |
| 8                            |         | 31.4068                           | 39.6338         | 37.5031         | 14.9372                  | 39.6338                      |
| ×ON                          |         | 4.2621 46.4460 31.4068            | 38.8851         | 25.8648         | 9.5503                   | 46.4460                      |
| ROG                          |         | 4.2621                            | 4.7966          | 4.3939          | 237.0656                 | 237.0656                     |
|                              | Year    | 2021                              | 2022            | 2023            | 2024                     | Maximum                      |

| CO2e                       | 0.00                 |
|----------------------------|----------------------|
| .N20                       | 0.00                 |
| CH4                        | 0.00                 |
| Total CO2                  | 0.00                 |
| Bio-CO2 NBio-CO2 Total CO2 | 0.00                 |
| Bio- CO2                   | 0.00                 |
| PM2.5<br>Total             | 0.00                 |
| Exhaust<br>PM2.5           | 0.00                 |
| Fugitive<br>PM2.5          | 0.00                 |
| PM10<br>Total              | 0.00                 |
| Exhaust<br>PM10            | 0.00                 |
| Fugitive<br>PM10           | 0.00                 |
| S02                        | 0.00                 |
| 00                         | 0.00                 |
| NOx                        | 0.00                 |
| Roc                        | 0.00                 |
|                            | Percent<br>Reduction |

Page 6 of 35 CalEEMod Version: CalEEMod.2016.3.2

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

2.2 Overall Operational Unmitigated Operational

| CO2e                           |               | 259.11<br>92                                                   | 8,405.638                  | 47,972.68<br>39              | 637.44<br>17                        |
|--------------------------------|---------------|----------------------------------------------------------------|----------------------------|------------------------------|-------------------------------------|
| 0                              |               | 18,                                                            | r                          | 47,9                         | 74,0                                |
| NZO                            |               | 0.3300                                                         | 0.1532                     |                              | 0.4832 74,637.44<br>17              |
| CH4                            | lb/day.       | 0.4874                                                         | 0.1602                     | 2.1953                       | 2.8429                              |
| Total CO2                      | ) <b>(g</b> ) | 18,148.59<br>50                                                | 8,355.983 8,355.983<br>2 2 | 47,917.80 47,917.80<br>05 05 | 74,422.37<br>87                     |
| NBio-CO2                       |               | 0.0000 18,148.59 18,148.59 0.4874 0.3300 18,259.11<br>50 50 50 | 8,355.983<br>2             | 47,917.80<br>05              | 0.0000 74,422.37 74,422.37<br>87 87 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |               | 0.000.0                                                        |                            |                              | 0.0000                              |
| PM2.5<br>Total                 |               | 1.5974                                                         | 0.5292                     | 12.6083                      | 14.7349                             |
| Exhaust<br>PM2.5               |               | 1.5974 1.5974                                                  | 0.5292                     | 0.3132                       | 2.4399                              |
| Fugitive<br>PM2.5              |               |                                                                |                            | 12.2950                      | 48.4231 12.2950                     |
| PM10<br>Total                  |               | 1.5974                                                         | 0.5292                     | 46.2965                      | 48.4231                             |
| Exhaust<br>PM10                | lay           | 1.5974                                                         | 0.5292                     | 0.3373                       | 2.4640                              |
| Fugitive<br>PM10               | lb/day        |                                                                |                            | 45.9592                      | 45.9592                             |
| S02                            |               | 0.0944                                                         | 0.0418                     | 0.4681                       | 0.6043                              |
| တ                              |               | 88.4430                                                        | 4.2573                     | 110.0422                     | 202.7424                            |
| ROG NOx CO SO2.                |               | 30.5020 15.0496 88.4430 0.0944                                 | 6.7462                     | 45.9914 110.0422 0.4681      | 40.7912 67.7872 202.7424            |
| ROG                            |               | 30.5020                                                        | 0.7660                     | 9.5233                       | 40.7912                             |
|                                | Category      | Area                                                           | Energy                     | Mobile                       | Total                               |

### Mitigated Operational

| COZe                         |          | 0.3300 18,259.11<br>92              | 8,405.638<br>7              | 47,972.68<br>39                | 0.4832 74,637.44<br>17       |
|------------------------------|----------|-------------------------------------|-----------------------------|--------------------------------|------------------------------|
| NZO                          |          | 0.3300                              | 0.1532                      |                                | 0.4832                       |
| CH4                          | ay       | 0.4874                              | 0.1602                      | 2.1953                         | 2.8429                       |
| Total CO2                    | lb/day   | 18,148.59<br>50                     | 8,355.983<br>2              | 47,917.80<br>05                | 74,422.37<br>87              |
| Bio- CO2 NBio- CO2 Total CO2 |          | 0.0000 18,148.59 18,148.59<br>50 50 | 8,355.983 18,355.983<br>2 2 | 47,917.80 47,917.80<br>05 05   | 74,422.37 74,422.37<br>87 87 |
|                              |          | 0.0000                              |                             |                                | 0.0000                       |
| PM2.5<br>Total               |          | 1.5974                              | 0.5292                      | 12.6083                        | 14.7349                      |
| Exhaust<br>PM2.5             |          | 1.5974                              | 0.5292                      | 0.3132                         | 2.4399                       |
| Fugitive<br>PM2.5            |          |                                     |                             | 12.2950                        | 12.2950                      |
| PM10<br>Total                |          | 1.5974                              | 0.5292                      | 46.2965                        | 48.4231                      |
| Exhaust<br>PM10              | lb/day   | 1.5974                              | 0.5292                      | 0.3373                         | 2.4640                       |
| Fugitive<br>PM10             | /P/      |                                     |                             | 45.9592                        | 45.9592                      |
| S02                          |          | 0.0944                              | 0.0418                      | 9.5233 45.9914 110.0422 0.4681 | 0.6043                       |
| <b>၀</b> ၁                   |          | 30.5020 15.0496 88.4430 0.0944      | 4.2573                      | 110.0422                       | 40.7912 67.7872 202.7424     |
| NOX CO                       |          | 15.0496                             | 0.7660 6.7462               | 45.9914                        | 67.7872                      |
| ROG                          |          | 30.5020                             | 0.7660                      | 9.5233                         | 40.7912                      |
|                              | Category | Area                                | Energy                      | Mobile                         | Total                        |

Page 7 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| C02e              | 0.00    |
|-------------------|---------|
| N20               | 00'0    |
| CH4               | 00'0    |
| Total CO2         | 00.0    |
| NBio-CO2          | 00'0    |
| Bio-CO2           | 00'0    |
| PM2.5<br>Total    | 0.00    |
| Exhaust<br>PM2.5  | 00'0    |
| Fugitive<br>PM2.5 | 00'0    |
| PM10<br>Total     | 00'0    |
| Exhaust<br>PM10   | 00'0    |
| Fugitive<br>PM10  | 00'0    |
| S02               | 00.0    |
| 8                 | 00'0    |
| NOX               | 00'0    |
| ROG               | 0.00    |
|                   | Percent |

## 3.0 Construction Detail

### **Construction Phase**

(

| Phase<br>Number | Phase Name            | Phase Type            | Start Date  | End Date   | Num Days<br>Week | Num Days Phase Description Week |
|-----------------|-----------------------|-----------------------|-------------|------------|------------------|---------------------------------|
| _               | Demolition            | Demolition            | 9/1/2021    | 10/12/2021 | 5                | 30                              |
| 2               | Site Preparation      | Site Preparation      | 10/13/2021  | 11/9/2021  | 5                | 20                              |
| က               |                       | Grading               | i<br>i<br>i | 1/11/2022  | 5                | 45                              |
| 4               | Building Construction | Building Construction | 1/12/2022   | 12/12/2023 | 5                | 200                             |
| 'n              |                       |                       | 12/13/2023  | 1/30/2024  | 5                | 355                             |
| 9               | Architectural Coating | itectural Coating     | 1/31/2024   | 3/19/2024  | 5.               | 355                             |

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 112.5

Acres of Paving: 0

Residential Indoor: 2,025,000; Residential Outdoor: 675,000; Non-Residential Indoor: 326,400; Non-Residential Outdoor: 108,800; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/12/2021 2:30 PM

| Demolition<br>Demolition | 나 본 이 전대 하지 않아서 전하지 않아서 하는 것들은 것을 하다. 전 | المترادي وهيدا المتوازية بالمائم المترات فعليا الأراء الإداءاء | Models Theory States and the | A. C. Brand See Jan 1991 (A.S. 1971) | <ul> <li>Zewie ist in spiritual probability in the</li> </ul> |
|--------------------------|-----------------------------------------|----------------------------------------------------------------|------------------------------|--------------------------------------|---------------------------------------------------------------|
| Demolition               | Concrete/Industrial Saws                |                                                                | 8.00                         | 81                                   | 0.73                                                          |
|                          | Excavators                              | Ε<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1       | 8.00                         | 158                                  | 0.38                                                          |
| Demolition               | Rubber Tired Dozers                     | 2                                                              | 8.00                         | 247                                  | 0.40                                                          |
| Site Preparation         | Rubber Tired Dozers                     | ල<br>                                                          | 8.00                         | 247                                  | 0.40                                                          |
| Site Preparation         | Tractors/Loaders/Backhoes               | 4                                                              | 8.00                         | 97                                   | 0.37                                                          |
| Grading                  | Excavators                              | 2                                                              | 8.00                         | 158                                  | 0.38                                                          |
| Grading                  | Graders                                 |                                                                | 8.00                         | 187                                  | 0.41                                                          |
| Grading                  | Rubber Tired Dozers                     |                                                                | 8.00                         | 247                                  | 0.40                                                          |
| Grading                  | Scrapers                                | 2                                                              | 8.00                         | 367                                  | 0.48                                                          |
| Grading                  | Tractors/Loaders/Backhoes               | 2                                                              | 8.00                         | 97                                   | 0.37                                                          |
| Building Construction    | Cranes                                  |                                                                | 7.00                         | 231                                  | 0.29                                                          |
| Building Construction    | Forklifts                               | က                                                              | 8.00                         | 88                                   | 0.20                                                          |
| Building Construction    | Generator Sets                          |                                                                | 8.00                         | 84                                   | 0.74                                                          |
| Building Construction    | Tractors/Loaders/Backhoes               | ()                                                             | 7.00                         | 97                                   | 0.37                                                          |
| Building Construction    | Welders                                 |                                                                | 8.00                         | 46                                   | 0.45                                                          |
| Paving                   | Pavers                                  | 2                                                              | 8.00                         | 130                                  | 0.42                                                          |
| Paving                   | Paving Equipment                        | 2                                                              | 8.00                         | 132                                  | 0.36                                                          |
| Paving                   | Rollers                                 | 2                                                              | 8.00                         | 808                                  | 0.38                                                          |
| Architectural Coating    | Air Compressors                         | 1                                                              | 6.00                         | 78                                   | 0.48                                                          |

**Trips and VMT** 

Page 9 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| Phase Name            | Phase Name Offroad Equipment Worker Trip Count Number | Worker Trip<br>Number | Vendor Trip<br>Number | Hauling Trip<br>Number | Worker Trip Vendor Trip Hauling Trip<br>Length Length Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Worker Vehicle<br>Class | Venide Class | Hauling<br>Venicle Class |
|-----------------------|-------------------------------------------------------|-----------------------|-----------------------|------------------------|--------------------------------------------------------------|-----------------------|------------------------|-------------------------|--------------|--------------------------|
| Demolition            | 9                                                     | 15.00                 | 00.0                  | 458.00                 | 10.00                                                        | 9.90                  | 20.00                  | 20.00 LD_Mix            | HDT_Mix      | HHDT                     |
| Site Preparation      |                                                       | 18.00                 | 00.00                 | 0.00                   | 10.00                                                        | 9.90                  |                        | 20.00 LD_Mix            | HDT_Mix      | HHDT                     |
| Grading               | 8                                                     | 20.00                 | 00.0                  | 0.00                   | 10.00                                                        | 9.90                  | 20.00                  | 20.00 LD_Mix            | HDT_Mix      | HHDT                     |
| Building Construction | 6                                                     | 801.00                | 143.00                |                        | 10.00                                                        | 9.90                  |                        | 20.00 LD_Mix            | HDT_Mix      | HHDT                     |
| Paving                | 9                                                     | 15.00                 | 00.00                 | 0.00                   | 10.00                                                        | 9.90                  |                        | 20.00 LD_Mix            | HDT_Mix      | HHDT                     |
| Architectural Coating | 1                                                     | 160.00                | 00.00                 | 0.00                   | 10.00                                                        | 9.90                  | 20.00                  | 20.00 LD_Mix            | HDT_Mix      | HHDT                     |

(

# 3.1 Mitigation Measures Construction

3.2 Demolition - 2021

| 128, 08, 99                                                                                 | 19-ha gorie ja |                                           | 1.                            | 1.                         |
|---------------------------------------------------------------------------------------------|----------------|-------------------------------------------|-------------------------------|----------------------------|
| CO2e                                                                                        |                | 0.0000                                    | 3,774.317                     | 3,774.317<br>4             |
| NZO                                                                                         |                |                                           |                               |                            |
| CH4                                                                                         | Ŷe<br>G        |                                           | 1.0549                        | 1.0549                     |
| Total CO2                                                                                   | lb/day         | 0.000.0                                   | 3,747.944<br>9                | 3,747.944 3,747.944<br>9 9 |
| NBio- CO2                                                                                   |                |                                           | 3,747.944 3,747.944<br>9 9    | 3,747.944<br>9             |
| Bio-CO2                                                                                     |                |                                           |                               |                            |
| PM10 Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e Total PM2.5 PM2.5 Total |                | 0.5008                                    | 1.4411                        | 1.9419                     |
| Exhaust<br>PM2.5                                                                            |                | 3.3074 0.0000 3.3074 0.5008 0.0000 0.5008 | 1.4411                        | 1.4411                     |
| Fugitive<br>PM2.5                                                                           |                | 0.5008                                    | <br> <br> <br> <br> <br>      | 0.5008                     |
| PM10<br>Total                                                                               |                | 3.3074                                    | 1.5513                        | 4.8588                     |
| Exhaust<br>PM10                                                                             | lb/day         | 0.000.0                                   | 1.5513                        | 3.3074 1.5513              |
| Fugitive Exhaust<br>PM10 PM10                                                               | 19/6           | 3.3074                                    |                               |                            |
| S02                                                                                         |                |                                           | 0.0388                        | 0.0388                     |
| co                                                                                          |                |                                           | 21.5650                       | 21.5650                    |
| ROG NOX                                                                                     |                |                                           | 3.1651 31.4407 21.5650 0.0388 | 31,4407 21,5650            |
| ROG                                                                                         |                |                                           | 3.1651                        | 3.1651                     |
|                                                                                             | Category       | Fugitive Dust                             | Off-Road                      | Total                      |

Page 10 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/12/2021 2:30 PM

3.2 Demolition - 2021

# **Unmitigated Construction Off-Site**

|                                  |          | မွ                                | !_      |                               | စ္                         |
|----------------------------------|----------|-----------------------------------|---------|-------------------------------|----------------------------|
| CO2e                             | 3        | 1,272.125<br>2                    | 0.0000  | 110.5539                      | 1,382.679                  |
| NZO                              |          |                                   |         | <br> <br> <br> <br> <br> <br> |                            |
| CH4                              | b/day    | 0.0908                            | 0.0000  | 3.3300e-<br>003               | 0.0941                     |
| Bio- CO2 NBio- CO2 Total CO2 CH4 | JQI      | 1,269.855 1,269.855 0.0908<br>5 5 | 0.0000  | 110.4707 3.3300e-<br>003      | 1,380.326 1,380.326<br>2 2 |
| NBio-CO2                         |          | 1,269.855<br>5                    | 0.0000  | 110.4707                      | 1,380.326<br>2             |
| Bio-CO2                          |          |                                   |         |                               |                            |
| PM2.5<br>Total                   |          | 0.0854                            | 0.0000  | 0.0311                        | 0.1165                     |
| Exhaust<br>PM2.5                 |          | 0.0122                            | 0.0000  | 8.8000e-<br>004               | 0.0131                     |
| Fugitive<br>PM2.5                |          | 0.0732                            | 0.0000  | 0.0303                        | 0.1034                     |
| PIM10<br>Total                   |          | 0.2797                            | 0.0000  | 0.1151                        | 0.3948                     |
| Exhaust<br>PM10                  | lay      | 0.0128                            | 0.000.0 | 9.5000e-<br>004               | 0.0137                     |
| Fugitive<br>PM10                 | lb/day.  | 0.2669                            | 0.000.0 | 0.1141                        | 0.3810                     |
| co soz                           |          | 0.0117                            | 0.0000  | 1.1100e- 0<br>003             | 0.0128                     |
| 00                               |          | 0.1304 4.1454 1.0182 0.0117       | 0.0000  | 0.3963                        | 1.4144                     |
| ×ON                              |          | 4.1454                            | 0.0000  | 0.0346                        | 4.1800                     |
| ROG                              |          | 0.1304                            | 0.0000  | 0.0532                        | 0.1835                     |
|                                  | Category | Hauling                           | Vendor  | Worker                        | Total                      |

| C02e                                  |          | 0.0000               | 3,774.317                         | 3,774.317<br>4                |
|---------------------------------------|----------|----------------------|-----------------------------------|-------------------------------|
| N2O                                   |          |                      |                                   |                               |
| CH4                                   | biday    |                      | 1.0549                            | 1.0549                        |
| Total CO2                             | )/g      | 0.0000               | 3,747.944<br>9                    | 3,747.944<br>9                |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4. |          |                      | 3,747.944 3,747.944 1.0549<br>9 9 | 0.0000 3,747,944 3,747,944    |
| Bio-CO2                               |          |                      | 0.0000                            | 0.0000                        |
| PM2.5<br>Total                        |          | 0.5008               | 1.4411                            | 1.9419                        |
| Exhaust<br>'PM2.5                     |          | 0.0000               | 1.4411                            | 1.4411                        |
| Fugitive<br>PM2.5                     |          | 0.5008               |                                   | 4.8588 0.5008                 |
| PIM10<br>Total                        |          | 0.0000 3.3074 0.5008 | 1,5513                            | 4.8588                        |
| Exhaust<br>PM10                       | lb/day   | 0.000.0              | 1.5513                            | 1.5513                        |
| Fugitive<br>PM10                      | yqi      | 3.3074               |                                   | 3,3074                        |
| SO2                                   |          |                      | 0.0388                            | 0.0388                        |
| ဝ၁                                    |          |                      | 21.5650                           | 21,5650                       |
| NOX                                   |          |                      | 3.1651 31.4407 21.5650 0.0388     | 3.1651 31.4407 21.5650 0.0388 |
| ROG                                   |          |                      | 3.1651                            | 3.1651                        |
|                                       | Category | Fugitive Dust        | Off-Road                          | Total                         |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Page 11 of 35

Date: 1/12/2021 2:30 PM

3.2 Demolition - 2021
Mitigated Construction Off-Site

| Water Provi                    | sjagar e | 1                                  |         | -                   |                             |
|--------------------------------|----------|------------------------------------|---------|---------------------|-----------------------------|
| C02e                           |          | 1,272.125<br>2                     | 0.0000  | 110.5539            | 1,382.679<br>1              |
| N2O                            |          |                                    |         |                     |                             |
| CH4                            | lay      | 0.0908                             | 0.0000  | 3.3300e-<br>003     | 0.0941                      |
| Total CO2                      | lb/day   | 1,269.855 1,269.855<br>5 5         | 0.000   | 110.4707 110.4707   | 1,380.326 1,380.326<br>2 2  |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 1,269.855<br>5                     | 0.0000  | 110.4707            | 1,380.326<br>2              |
| Bio- C02                       |          |                                    |         |                     |                             |
| PM2.5<br>Total                 |          | 0.0854                             | 0.000.0 | 0.0311              | 0.1165                      |
| Exhaust<br>PM2.5               |          | 0.0122                             | 0.000.0 | 8.8000e-<br>004     | 0.0131                      |
| Fugitive<br>PM2.5              |          | 0.0732                             | 0.000.0 | 0.0303              | 0.1034                      |
| PM10<br>Total                  |          | 0.2797                             | 0.0000  | 0.1151              | 0.3948                      |
| Exhaust<br>PM10                | lay      | 0.0128                             | 0.000.0 | 9.5000e-<br>004     | 0.0137                      |
| Fugitive<br>PM10               | ¹lb/day  | 0.2669                             | 0.000.0 | 141                 | 0.3810                      |
| S02                            |          | 0.0117                             | 0.0000  | 1.1100e- 0.1<br>003 | 0.0128                      |
| NOX CO                         |          | 1.0182                             | 0.000   | 0.3963              | 1.4144                      |
| ×ON                            |          | 4.1454                             | 0.0000  | 0.0346              | 0.1835 4.1800 1.4144 0.0128 |
| ROG                            |          | 0.1304 4.1454 1.0182 0.0117 0.2669 | 0.0000  | 0.0532              | 0.1835                      |
|                                | Category | Hauling                            | Vendor  | Worker              | Total                       |

3.3 Site Preparation - 2021

| CO2e                                                                                       |          | 0.0000                        | 3,715.457                     | 3,715.457<br>3                     |
|--------------------------------------------------------------------------------------------|----------|-------------------------------|-------------------------------|------------------------------------|
| N2O CO2e                                                                                   |          |                               |                               |                                    |
| C)+4                                                                                       | ay       |                               | 1.1920                        | 1.1920                             |
| Total CO2                                                                                  | lb/day   | 0.000.0                       | 3,685.656<br>9                | 3,685.656 3,685.656<br>9           |
| NBio- CO2                                                                                  |          |                               | 3,685.656 3,685.656<br>9      | 3,685.656<br>9                     |
| Bio- CO2                                                                                   |          |                               |                               |                                    |
| ROG NOx CO SO2 Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 9.9307                        | 1.8809                        | 11.8116                            |
| Exhaust<br>PM2.5                                                                           |          | 0.000.0                       | 1.8809                        | 11.8809 11.8116                    |
| Fugitive<br>PM2.5                                                                          |          | 9.9307                        |                               | 2.0445 20.1107 9.9307              |
| PM10<br>Total                                                                              |          | 18.0663 0.0000 18.0663 9.9307 | 2.0445                        | 20.1107                            |
| Exhaust<br>PM10                                                                            | lb/day   | 0.0000                        | 2.0445                        |                                    |
| Fugitive<br>PM10                                                                           | lb/      | 18.0663                       |                               | 18.0663                            |
| S02                                                                                        |          |                               | 0.0380                        | 0.0380                             |
| တ                                                                                          |          |                               | 21.1543                       | 21.1543                            |
| XON                                                                                        |          |                               | 40.4971                       | 3.8882 40.4971 21.1543 0.0380 18.0 |
| ROG                                                                                        |          |                               | 3.8882 40.4971 21.1543 0.0380 | 3.8882                             |
|                                                                                            | Category | Fugitive Dust                 | Off-Road                      | Total                              |

Date: 1/12/2021 2:30 PM Page 12 of 35 CalEEMod Version: CalEEMod.2016.3.2

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.3 Site Preparation - 2021
Unmitigated Construction Off-Site

| CO2e                            |          | 0.0000                      | 0.0000                | 132.6646          | 132.6646          |
|---------------------------------|----------|-----------------------------|-----------------------|-------------------|-------------------|
| N2O                             |          |                             |                       |                   |                   |
| CH4                             | lay      | 0.000.0                     | 0.0000                | 3.9900e-<br>003   | 3.9900e-<br>003   |
| Total CO2                       | leb/ql   | 0.0000 0.0000 0.0000        | 0.0000                | 132.5649 132.5649 | 132.5649 132.5649 |
| Bio-CO2 NBio-CO2 Total CO2 CH4  |          | 0.0000                      | 0.0000                | 132.5649          | 132.5649          |
| Bio- CO2                        |          |                             | 1<br>1<br>1<br>1<br>1 |                   |                   |
| st PM2.5<br>5 Total             |          | 0.0000                      | 0.0000                | 0.0374            | 0.0374            |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.000 0.0000 0.0000         | 0.000.0               | 1.0500e-<br>003   | 1.0500e-<br>003   |
| Fugitive<br>PM2.5               |          | 0.0000                      | 0.0000                | 0.0363            | 0.0363            |
| PM10.<br>Total                  |          | 0.0000                      | 0.000.0               | 0.1381            | 0.1381            |
| Exhaust<br>PM10                 | lb/day   | 0.0000                      | 0.0000                | 9 1.1400e-<br>003 | 1.1400e-<br>003   |
| Fugitive<br>PM10                | )(q)     |                             | 0.000                 | 0.136             | 0.1369            |
| CO SO2                          |          | 0.0000                      | 0.0000                | 5 1.3300e-<br>003 | 1.3300e-<br>003   |
| တ                               |          | 0.000                       | 0.0000                | 0.475             | 0.4755            |
| XON                             |          | 0.0000 0.0000 0.0000 0.0000 | 0.0000                | 0.0415            | 0.0415            |
| ROG                             |          | 0.0000                      | 0.0000                | 0.0638            | 0.0638            |
|                                 | Category | Hauling                     | Vendor                | Worker            | Total             |

| P = 57 16 = 2                    | T 807    |                       |                                   |                                   |
|----------------------------------|----------|-----------------------|-----------------------------------|-----------------------------------|
| CO2e                             |          | 0.0000                | 3,715.457                         | 3,715.457<br>3                    |
| OŽN                              |          |                       |                                   |                                   |
| CH4                              |          |                       | 1.1920                            | 1.1920                            |
| otal CO2                         | lb/day   | 0.0000                |                                   |                                   |
| Bio-CO2 T                        |          |                       | 0.0000 3,685,656 3,685,656<br>9 9 | ,685.656 3,<br>9                  |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          |                       | 0.000.0                           | 0.0000 3,685.656 3,685.656<br>9 9 |
| PM2.5                            |          | 9.9307                | 1.8809                            | 11.8116                           |
| Exhaust<br>PM2.5                 |          | 0.0000                | 1.8809                            | 1.8809                            |
| Fugitive<br>PM2.5                |          | 9.9307                |                                   | 9.9307                            |
| PM10<br>Total                    |          | 0.0000 18.0663 9.9307 | 2.0445                            |                                   |
| Exhaust<br>-PM10                 | ay       | 0.0000                | 2.0445                            | 2.0445 20.1107                    |
| Fugitive Exhaust<br>PM10 PM10    | lb/day   | 18.0663               |                                   | 18.0663                           |
| S02                              |          |                       | 0.0380                            | 0.0380                            |
| လ                                |          |                       | 21.1543                           | 21.1543                           |
| NOX                              |          |                       | 3.8882 40.4971 21.1543            | 3.8882 40.4971 21.1543            |
| ROG                              |          |                       | 3.8882                            | 3.8882                            |
|                                  | Category | Fugitive Dust         | Off-Road                          | Total                             |

Page 13 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/12/2021 2:30 PM

3.3 Site Preparation - 2021
Mitigated Construction Off-Site

| a kata kanasa                  | Lance of Page |               |         |                   |                 |
|--------------------------------|---------------|---------------|---------|-------------------|-----------------|
| C02e                           |               | 0.0000        | 0.0000  | 132.6646          | 132.6646        |
| NZO                            |               |               |         | <br>              |                 |
| CH4                            | lay           | 0.000.0       | 0.0000  | 3.9900e-<br>003   | 3.9900e-<br>003 |
| Fotal CO2                      | (lb/day       | 0.0000 0.0000 | 0.0000  | 132.5649 132.5649 | 132.5649        |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |               | 0.000.0       | 0.0000  | 132.5649          | 132.5649        |
| Bio-CO2                        |               |               |         |                   |                 |
| PM2.5<br>Total                 |               | 0.000.0       | 0.000.0 | 0.0374            | 0.0374          |
| Exhaust<br>PM2.5               |               | 0.000.0       | 0.0000  | 1.0500e-<br>003   | 1.0500e-<br>003 |
| Fugitive<br>PM2.5              |               | 0.0000        | 0.0000  | 0.0363            | 0.0363          |
| PM10<br>Total                  |               | 0.0000        | 0.000.0 | 0.1381            | 0.1381          |
| Exhaust<br>PM10                | lay           | 0.000.0       | 0.000.0 | 1.1400e-<br>003   | 1.1400e-<br>003 |
| Fugitive<br>PM10               | lb/day        | 0.000.0       | 0.000.0 | 0.1369            | 0.1369          |
| S02                            |               | 0.0000        | 0.0000  | 0.4755 1.3300e- ( | 1.3300e-<br>003 |
| ဝ၁                             |               | 0.0000        | 0.0000  | 0.4755            | 0.4755          |
| NOX                            |               | 0.0000        | 0.0000  | 0.0415            | 0.0415          |
| ROG                            |               | 0.0000        | 0.0000  | 0.0638            | 0.0638          |
|                                | Category      | Hauling       | Vendor  | Worker            | Total           |

3.4 Grading - 2021

| CO2e                                     |          | 0.0000        | 6,055.613<br>4                    | 6,055.613<br>4                    |
|------------------------------------------|----------|---------------|-----------------------------------|-----------------------------------|
| NZO                                      |          |               | ,                                 |                                   |
| CH4                                      | ay       |               | 1.9428                            | 1.9428                            |
| Bio- CO2 NBio- CO2 Total CO2             | lbíday   | 0.000.0       | 6,007.043 6,007.043 1.9428<br>4 4 | 6,007.043 6,007.043 1.9428<br>4 4 |
| NBio-CO2                                 |          |               | 6,007.043                         | 6,007.043<br>4                    |
|                                          |          |               |                                   |                                   |
| PM2.5<br>Total                           |          | 3,5965        | 1.8265                            | 5.4230                            |
| Exhaust<br>PM2.5                         |          | 0.0000        | 1.8265                            | 1.8265                            |
| Fugitive<br>PM2.5                        |          | 3.5965        |                                   | 3.5965                            |
| 76 W 1 1 1 2 2 m                         |          | 0.0000 8.6733 | 1.9853                            | 10.6587                           |
| Exhaust<br>PM10                          | b/day    | 0.0000        | 1.9853                            | 1.9853                            |
| Fugitive Exhaust PM10<br>PM10 PM10 Total | /ql      | 8.6733        |                                   | 8.6733                            |
| S02                                      |          |               | 0.0620                            | 0.0620                            |
| 8                                        |          |               | 30.8785                           | 30.8785                           |
| NOX                                      |          |               | 4.1912 46.3998 30.8785 0.0620     | 4.1912 46.3998 30.8785 0.0620     |
| ROG                                      |          | •             | 4.1912                            | 4.1912                            |
|                                          | Category | Fugitive Dust | Off-Road                          | Total                             |

Page 14 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2021 Unmitigated Construction Off-Site

|                                | St       |                             |              |                     |                        |
|--------------------------------|----------|-----------------------------|--------------|---------------------|------------------------|
| CO2e                           |          | 0.0000                      | 0.0000       | 147.4051            | 147.4051               |
| N2O                            |          |                             |              |                     |                        |
| CH4                            | lay      | 0.0000                      | 0.0000       | 4.4300e-<br>003     | 4.4300e-<br>003        |
| Total CO2                      | kep/ql   | 0.0000 0.00000 0.00000      | 0.0000       | 147.2943 147.2943   | 147.2943 147.2943      |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.000.0                     | 0.0000       | 147.2943            | 147.2943               |
| Bio- CO2                       |          |                             |              |                     |                        |
| PM2.5<br>Total                 |          | 0.000.0                     | 0.000.0      | 0.0415              | 0.0415                 |
| Exhaust<br>PM2.5               |          | 0.000.0                     | 0.0000       | 1.1700e-<br>003     | 1.1700e-<br>003        |
| Fugitive<br>PM2.5              |          | 0.0000 0.0000               | 0.0000       | 0.0404              | 0.0404                 |
| PM10<br>Total                  |          | 0.0000 0.0000               | 0.0000       | 0.1534              | 0.1534                 |
| Exhaust<br>PM10                | iay      | 0.0000                      | 0.000.0      | 1.2700e-<br>003     | 1.2700e-<br>003        |
| Fugitive<br>PM10               | libiday  | 0.0000                      | 0.0000       | 0.1521              | 0.1521                 |
| S02                            |          | 0.0000                      | 0.0000       | 1.4800e- 0.1<br>003 | 0.5284 1.4800e-<br>003 |
| 8.                             |          | 0.0000                      | 0.0000       | 0.5284              | 0.5284                 |
| XON                            |          | 0.0000 0.0000 0.0000 0.0000 | 0.000 0.0000 | 0.0709 0.0462       | 0.0462                 |
| ROG                            |          | 0.0000                      | 0.0000       | 0.0709              | 0.0709                 |
|                                | Category | Hauling                     | Vendor       | Worker              | Total                  |

| CO2e                                           |          | 0.0000               | 6,055.613<br>4                    | 6,055.613<br>4                       |
|------------------------------------------------|----------|----------------------|-----------------------------------|--------------------------------------|
| N2O                                            |          |                      |                                   |                                      |
| CF4                                            | y.       |                      | 1.9428                            | 1.9428                               |
| Total CO2                                      | lb/day   | 0.0000               | 6,007.043<br>4                    | 6,007.043<br>4                       |
| NBio-CO2                                       |          |                      | 0.0000 6,007.043 6,007.043 1.9428 | 0.0000 6,007.043 6,007.043 1.9428    |
| Bio- CO2                                       |          |                      | 0.000.0                           | 0.0000                               |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O Total |          | 3.5965               | 1.8265                            | 5.4230                               |
| Exhaust<br>PM2.5                               |          | 0.0000               | 1.8265                            | 1.8265                               |
| ugitive<br>PM2.5                               |          | 3.5965               |                                   | 3.5965                               |
| PM10<br>Total                                  |          | 8.6733 3.5965 0.0000 | 1.9853                            | 10.6587                              |
| Exhaust<br>PM10                                | lay      | 0.000.0              | 1.9853                            | 1.9853                               |
| Fugitive<br>PM10                               | ∖lb/day  | 8.6733               |                                   |                                      |
| S02                                            |          |                      | 0.0620                            | 0.0620                               |
| 00                                             |          |                      | 30.8785                           | 30.8785                              |
| ROG NOX CO                                     |          |                      | 4.1912 46.3998                    | 4.1912 46.3998 30.8785 0.0620 8.6733 |
| 806<br>8                                       |          |                      | 4.1912                            | 4.1912                               |
|                                                | Category | Fugitive Dust        | Off-Road                          | Total                                |

Page 15 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2021
Mitigated Construction Off-Site

| ø,                             |          | g                                  |         | 51                         | 5                 |
|--------------------------------|----------|------------------------------------|---------|----------------------------|-------------------|
| C02e                           |          | 0.0000                             | 0.0000  | 147.4051                   | 147.4051          |
| NZO                            |          |                                    |         |                            |                   |
| CH4                            | lay      | 0.0000                             | 0.0000  | 4.4300e-<br>003            | 4.4300e-<br>003   |
| Total CO2                      | lb/day   | 0.0000 0.0000                      | 0.0000  | 147.2943 147.2943 4.4300e- | 147.2943 147.2943 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |          | 0.0000                             | 0.0000  | 147.2943                   | 147.2943          |
| Bio-CO2                        |          |                                    |         |                            |                   |
| PM2.5<br>Total                 |          | 0.000.0                            | 0.0000  | 0.0415                     | 0.0415            |
| Exhaust PM2.5<br>PM2.5 Total   |          | 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.000.0 | 1.1700e-<br>003            | 1.1700e-<br>003   |
| Fugitive<br>PM2.5.             |          | 0.0000                             | 0.000.0 | 0.0404                     | 0.0404            |
| PM10 Fugitive<br>Total PM2.5   |          | 0.0000                             | 0.0000  | 0.1534                     | 0.1534            |
| Ogitive Exhaust PM10 PM10      | iay      |                                    | 0.0000  | 1.2700e-<br>003            | 1.2700e-<br>003   |
| Fugitive<br>PM10               | İb/day   | 0.0000                             | 0.0000  | 0.1521                     | 0.1521            |
| co soz                         |          | 0.0000                             | 0.0000  | 1.4800e- 0<br>003          | 4 1.4800e-<br>003 |
|                                |          | 0.0000 0.0000 0.0000               | 0.0000  | 0.5284                     | 0.0462 0.5284     |
| хои                            |          | 0.0000                             | 0.0000  | 0.0462                     | 0.0462            |
| ROG                            |          | 0.0000                             | 0.0000  | 0.0709                     | 0.0709            |
|                                | Category | Hauling                            | Vendor  | Worker                     | Total             |

3.4 Grading - 2022

| co2e                                                                 |          | 0.0000        | 6,060.015                         | 6,060.015<br>8                       |
|----------------------------------------------------------------------|----------|---------------|-----------------------------------|--------------------------------------|
| N2O                                                                  |          |               |                                   |                                      |
| CH4                                                                  | lb/day . |               | 1.9442                            | 1.9442                               |
| Total CO2                                                            | )(q)     | 0.0000        | 6,011.410<br>5                    | 6,011.410 6,011.410 1.9442<br>5 5    |
| NBio-CO2                                                             |          |               | 6,011.410 6,011.410 1.9442<br>5 5 | 6,011.410<br>5                       |
| Bio-CO2                                                              |          |               |                                   |                                      |
| PM2.5<br>Total                                                       |          | 3.5965        | 1.5041                            | 5.1006                               |
| PM10 Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O Total |          | 0.000.0       | 1.5041                            | 1.5041                               |
| Fugitive<br>PM2.5                                                    |          | 3.5965        |                                   | 3.5965                               |
| PM10<br>Total                                                        |          | 8.6733        | 1.6349                            | 1.6349 10.3082                       |
| Fugitive Exhaust<br>PM10 PM10                                        | lb/day   | 0.0000        | 1.6349                            |                                      |
| Fugitive<br>PM10                                                     | lb/      | 8.6733        |                                   | 8.6733                               |
| 80 <b>2</b>                                                          |          |               | 0.0621                            | 0.0621                               |
| 00                                                                   |          |               | 29.0415                           | 29.0415                              |
| ROG NOX                                                              |          |               | 38.8435 29.0415 0.0621            | 3.6248 38.8435 29.0415 0.0621 8.6733 |
| ROG                                                                  |          |               | 3.6248                            | 3.6248                               |
|                                                                      | Category | Fugitive Dust | Off-Road                          | Total                                |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/12/2021 2:30 PM

3.4 Grading - 2022
Unmitigated Construction Off-Site

| Fluidence at                          | . 50 de 15 |                      |         |                            | Ι.                     |
|---------------------------------------|------------|----------------------|---------|----------------------------|------------------------|
| CO2e                                  |            | 0.0000               | 0.0000  | 142.2207                   | 142.2207               |
| N2O CO2e                              |            |                      |         |                            |                        |
| CH#                                   | Ae.        | 0.0000               | 0.0000  | 4.0000e-<br>003            | 4.0000e-<br>003        |
| Total CO2                             | . Ibi/day  | 0.0000 0.0000        | 0.000.0 | 142.1207                   | 142.1207               |
| NBio-CO2                              |            | 0.000.0              | 0.0000  | 142.1207 142.1207 4.0000e- | 142.1207 142.1207      |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4. |            |                      |         |                            |                        |
| PM2.5<br>Tôtal                        |            | 00000                | 0.0000  | 0.0415                     | 0.0415                 |
| Exhaust<br>PM2.5                      |            | 0.000 0.0000         | 0.0000  | 1.1300e-<br>003            | 1.1300e-<br>003        |
| Fugitive<br>PM2.5                     |            | 0.0000               | 0.0000  | 0.0404                     | 0.0404                 |
| PM10<br>Total                         |            | 0.0000               | 0.000.0 | 0.1534                     | 0.1534                 |
| Exhaust<br>PM10                       | lay        | 0.0000               | 0.000.0 | 1.2300e- 0<br>003          | 1.2300e-<br>003        |
| Fugitive<br>PM10                      | lb/day     | 0.000.0              | 0.000.0 | 0.1521                     | 0.1521                 |
| co soz                                |            | 0.0000               | 0.000.0 | 1 1.4300e-<br>003          | 0.4861 1.4300e-<br>003 |
| တ                                     |            | 0.0000 0.0000 0.0000 | 0.000   | 0.486                      |                        |
| NOX                                   |            | 0.0000               | 0.0000  | 0.0416                     | 0.0416                 |
| ROG                                   |            | 0.0000               | 0.0000  | 0.0665                     | 0.0665                 |
|                                       | Category   | Hauling              | Vendor  | Worker                     | Total                  |

| C02e                                                                        |          | 0.0000               | 6,060.015<br>8                    | 6,060.015<br>8                           |
|-----------------------------------------------------------------------------|----------|----------------------|-----------------------------------|------------------------------------------|
| NZO                                                                         |          |                      |                                   |                                          |
| CH4                                                                         | 8        |                      | 1.9442                            | 1.9442                                   |
| Total CO2                                                                   | lb/đay   | 0.000.0              | 5,011.410<br>5                    | 6,011.410<br>5                           |
| NBio-CO2                                                                    |          |                      | 0.0000 6.011.410 6,011.410 1.9442 | 6,011.410<br>5                           |
| Bio- CO2                                                                    |          |                      | 0.0000                            | 0.0000 6,011.410 6,011.410 1.9442<br>5 5 |
| Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O PM2.5 PM2.5 Total |          | 3.5965               | 1.5041                            | 5.1006                                   |
| Exhaust<br>PM2.5                                                            |          | 0.000.0              | 1.5041                            | 1.5041                                   |
| Fugitive<br>PM2.5                                                           |          | 3.5965               |                                   | 3.5965                                   |
| PM10<br>Total                                                               |          |                      | 1.6349                            | 10.3082                                  |
| CO SO2. Fugitive Exhaust PM:10 PM:10                                        | lay      | 8.6733 0.0000 8.6733 | 1.6349                            | 1.6349                                   |
| Fugitive<br>PM10                                                            | lb/day   | 8.6733               |                                   | 8.6733                                   |
| .S02                                                                        |          |                      | 0.0621                            | 0.0621                                   |
| O)                                                                          |          |                      | 29.0415                           | 29.0415                                  |
| ROG NOx                                                                     |          |                      | 3.6248 38.8435 29.0415            | 3.6248 38.8435 29.0415 0.0621            |
| ROG                                                                         |          |                      | 3.6248                            | 3.6248                                   |
|                                                                             | Category | Fugitive Dust        | Off-Road                          | Total                                    |

Page 17 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.4 Grading - 2022
Mitigated Construction Off-Site

| Total Survivor                             | National Co. |                      |                             |                               | <del>,</del>         |
|--------------------------------------------|--------------|----------------------|-----------------------------|-------------------------------|----------------------|
| C02e                                       |              | 0.0000               | 0.0000                      | 142.2207                      | 142.2207             |
| N2O CO2e                                   |              |                      |                             |                               |                      |
| СН4                                        | lay          | 0.000.0              | 0.000                       | 4.0000e-<br>003               | 4.0000e-<br>003      |
| Total CO2                                  | lb/day       | 0.0000 0.0000 0.0000 | 0.0000                      | 142.1207 142.1207             | 142.1207 142.1207    |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4.      |              | 0.0000               | 0.0000                      | 142.1207                      | 142.1207             |
| Bio-CO2                                    |              |                      |                             |                               |                      |
| PM2.5<br>Total                             |              | 0.0000               | 0.0000                      | 0.0415                        | 0.0415               |
| Exhaust<br>PM2.5                           |              | 0.0000 0.0000 0.0000 | 0.0000                      | 1.1300e-<br>003               | 1.1300e-<br>003      |
| PM10 Fugitive Exhaust<br>Total PM2,5 PM2,5 |              | 0.0000               | 0.0000                      | 0.0404                        | 0.0404               |
| PM10<br>Total                              |              | 0.0000               | 0.0000                      | 0.1534                        | 0.1534               |
| Exhaust<br>PM10                            | lb/day       |                      | 0.0000                      | 1.2300e-<br>003               | 1,2300e-<br>003      |
| NOx CO SO2 Fugitive Exhaust PM10           | . IPv        | 0.0000               | 0.000.0                     | 0.1521                        | 0.1521               |
| \$02                                       |              | 0.0000               | 0.0000                      | 1. <b>4</b> 300e-<br>003      | 11.4300e-<br>003     |
| တ                                          |              | 0.0000               | 0.0000                      | 0.4861                        | 0.4861               |
| NOX                                        |              | 0.0000               | 0.0000 0.0000 0.0000 0.0000 | 0.0416 0.4861 1.4300e-<br>003 | 0.0665 0.0416 0.4861 |
| ROG                                        |              | 0.0000 0.0000 0.0000 | 0.0000                      | 0.0665                        | 0.0665               |
|                                            | Category     | Hauling              | Vendor                      | Worker                        | Total                |

# 3.5 Building Construction - 2022

| CO2e                                           |             | 2,569.632<br>2                    | 2,569.632<br>2                    |
|------------------------------------------------|-------------|-----------------------------------|-----------------------------------|
| N20 C02e                                       |             |                                   |                                   |
| CH4                                            | lay         | 0.6120                            | 0.6120                            |
| Total CO2                                      | <b>J(9)</b> | 2,554.333 2,554.333 0.6120<br>6 6 | 2,554.333 2,554.333 0.6120<br>6 6 |
| NBio-CO2                                       |             | 2,554.333<br>6                    | 2,554.333<br>6                    |
| Bio- CO2                                       |             |                                   |                                   |
| PM2.5 Bio- CO2 NBio-: CO2 Total CO2 CH4  Total |             | 0.7612 0.7612                     | 0.7612                            |
| Exhaust<br>PM2.5                               |             | 0.7612                            | 0.7612                            |
| PM10 Fugitive<br>Total PM2.5                   |             |                                   |                                   |
| PM10<br>Total                                  |             | 0.8090 0.8090                     | 0.8090                            |
| itive Exhaust<br>//10 PM10                     | p/day       | 0.8090                            | 0.8090                            |
| SO2 Fugitive<br>PM10                           | /qi         |                                   |                                   |
| SO2                                            |             | 0.0269                            | 0.0269                            |
| 8                                              |             | 16.3634                           | 16.3634                           |
| ROG NOX                                        |             | 1,7062 15.6156 16.3634 0.0269     | 1.7062 15.6156 16.3634 0.0269     |
| ROG                                            |             | 1.7062                            | 1.7062                            |
|                                                | Category    | Off-Road                          | Total                             |
|                                                |             |                                   |                                   |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/12/2021 2:30 PM

3.5 Building Construction - 2022
Unmitigated Construction Off-Site

|                              | Tr. Ed.A. |                      |                            |                            |                               |
|------------------------------|-----------|----------------------|----------------------------|----------------------------|-------------------------------|
| CO2e                         |           | 0.0000               | 3,795.028<br>3             | 5,695.940<br>8             | 9,490.969<br>1                |
| NZO                          |           |                      |                            | <br>                       |                               |
| CH4                          | ĵ.        | 0.0000               | 0.2381                     | 0.1602                     | 0.3984                        |
| Total CO2                    | lb/day    | 0.0000 0.0000 0.0000 | 3,789.075<br>0             | 5,691.935                  | 9,481.010<br>4                |
| Bio- CO2 NBio- CO2 Total CO2 |           | 0.0000               | 3,789.075 3,789.075<br>0 0 | 5,691.935 5,691.935<br>4 4 | 9,481.010 9,481.010<br>4 4    |
| Bio-CO2                      |           |                      |                            |                            |                               |
| PM2.5<br>Total               |           | 0.000.0              | 0.2881                     | 1.6617                     | 1.9498                        |
| Exhaust<br>PM2.5             |           | 0.000.0              | 0.0245                     | 0.0454                     | 0.0699                        |
| Fugitive<br>PM2.5            |           | 0.0000               | 0.2636                     | 1.6163                     | 1.8799                        |
| PM10<br>Total                |           | 0.0000 0.0000 0.0000 | 0.9412                     | 6.1425                     | 7.0836                        |
| Exhaust<br>PM10              | lay       | 0.000.0              | 0.0256                     | 0.0493                     | 0.0749                        |
| Fugitive<br>PM10             | lb/day    | 0.000.0              | 0.9155                     | 6.0932                     | 7.0087                        |
| S02                          |           | 0.0000               | 0.0354                     | 0.0571                     | 0.0926                        |
| Nox co so2                   |           | 0.0000 0.0000 0.0000 | 3.8005                     | 2.6620 1.6677 19.4699      | 3.0904 14.8350 23.2704 0.0926 |
| XON                          |           | 0.0000               | 13.1673 3.8005             | 1.6677                     | 14,8350                       |
| ROG                          |           | 0.0000               | 0.4284                     | 2.6620                     | 3.0904                        |
|                              | Category  | Hauling              | Vendor                     | Worker                     | Total                         |

| C02e                                     |          | 2,569.632<br>2                           | 2,569,632                         |
|------------------------------------------|----------|------------------------------------------|-----------------------------------|
| NZO CO2e                                 |          |                                          |                                   |
|                                          | as.      | 0.6120                                   | 0.6120                            |
| Total CO2                                | lb/day   | 2,554.333<br>6                           | 2,554.333<br>6                    |
| Bio-CO2 NBio-CO2 Total CO2 CH4           |          | 0.0000 2,554.333 2,554.333 0.6120<br>6 6 | 0.0000 2,554.333 2,554.333 0.6120 |
| Bio- CO2                                 |          | 0.000                                    | 0.0000                            |
| st PM2.5<br>5 Total                      |          | 0.7612 0.7612                            | 0.7612                            |
| Exhaust<br>PM2.5                         |          | 0.7612                                   | 0.7612                            |
| Fugitive<br>PM2.5                        |          |                                          |                                   |
| PM10<br>Total                            |          | 0.8090                                   | 0.8090                            |
| Exhaust PM10 Fugitive Exhaust PM10 PM2.5 | lb/day   | 0.8090 0.8090                            | 0.8090                            |
| Fugitive<br>PM10                         | )/q      |                                          |                                   |
| s02                                      |          | 0.0269                                   | 0.0269                            |
| co                                       |          | 16.3634                                  | 16.3634                           |
| NOX                                      |          | 1.7062 15.6156 16.3634 0.0269            | 7062 15.6156 16.3634              |
| ROG                                      |          | 1.7062                                   | 1.7062                            |
|                                          | Category | Off-Road                                 | Total                             |
|                                          | Ö        | δ                                        |                                   |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Page 19 of 35

Date: 1/12/2021 2:30 PM

3.5 Building Construction - 2022

Mitigated Construction Off-Site

| T12 S40 ATR                                                   | ES ELECTION |                      | •                          | ١                          | T                          |
|---------------------------------------------------------------|-------------|----------------------|----------------------------|----------------------------|----------------------------|
| C02e                                                          |             | 0.0000               | 3,795.028<br>3             | 5,695.940<br>8             | 9,490.969<br>1             |
| N2O CO2e                                                      |             |                      |                            |                            |                            |
| CH4                                                           | Á           | 0000.0               | 0.2381                     | 0.1602                     | 0.3984                     |
| Total CO2                                                     | lb/day      | 0.0000 0.0000 0.0000 | 3,789.075<br>0             | 5,691.935<br>4             | 9,481.010                  |
| NBio-CO2                                                      |             | 0.0000               | 3,789.075 3,789.075<br>0 0 | 5,691.935 5,691.935<br>4 4 | 9,481.010 9,481.010<br>4 4 |
| Bio-CO2 NBio-CO2 Total CO2 CH4                                |             | • • • • •            | L :<br>:<br>:<br>:         |                            |                            |
| PM2.5<br>Total                                                |             | 0.000.0              | 0.2881                     | 1.6617                     | 1.9498                     |
| Exhaust<br>PM2.5                                              |             | 0.0000               | 0.0245                     | 0.0454                     | 0.0699                     |
| Fugitive Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |             | 0.0000 0.0000 0.0000 | 0.2636                     | 1.6163                     | 1.8799                     |
| PM10<br>Tótal                                                 |             | 0.0000               | 0.9412                     | 6.1425                     | 7.0836                     |
| Exhaust<br>PM10                                               | lb/day      | 0.000.0              | 0.0256                     | 0.0493                     | 0.0749                     |
| Fugitive<br>PM10                                              | o/ql        | 0.0000               | 0.9155                     | 6.0932                     | 7.0087                     |
|                                                               |             | 0.0000               | 0.0354                     | 0.0571                     | 0.0926                     |
| 00                                                            |             | 0.0000               | 3.8005                     | 1.6677 19.4699             | 23,2704                    |
| ROG NOx CO SO2                                                |             | 0.0000 0.0000 0.0000 | 0.4284 13.1673             |                            | 3.0904 14.8350             |
| ROG                                                           |             | 0.0000               | 0.4284                     | 2.6620                     | 3.0904                     |
|                                                               | Category    | Hauling              | Vendor                     | Worker                     | Total                      |

3.5 Building Construction - 2023

| CO2e                                                                                                                                                                                   |          | 2,570.406                         | 2,570.406<br>1                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------|---------------------------------|
| N2O                                                                                                                                                                                    |          |                                   |                                 |
| CH4                                                                                                                                                                                    | lb/day   | 0.6079                            | 0.6079                          |
| Total CO2                                                                                                                                                                              | )/gl     | 2,555,209 2,555,209 0.6079<br>9 9 | 2,555.209 2,555.209 0.6079<br>9 |
| NBio-CO2                                                                                                                                                                               |          | 2,555.209<br>9                    | 2,555,209<br>9                  |
| PM10         Fugitive         Exhaust         PM2.5         Bio- CO2         NBio- CO2         Total         CO4           Total         PM2.5         Total         Total         CH4 |          | -1-1-1-1                          |                                 |
| PM2.5<br>Total                                                                                                                                                                         |          | 0.6584                            | 0.6584                          |
| Exhaust<br>PM2.5                                                                                                                                                                       |          | 0.6584 0.6584                     | 0.6584                          |
| Fugitive<br>PM2.5                                                                                                                                                                      |          |                                   |                                 |
| PIM10<br>Total                                                                                                                                                                         |          | 0.6997                            | 0.6997                          |
| itive Exhaust<br>//10: PM10                                                                                                                                                            | lay      | 0.6997 0.6997                     | 0.6997                          |
| P. P.                                                                                                                                                                                  | lb/day   |                                   |                                 |
| 802                                                                                                                                                                                    |          | 0.0269                            | 0.0269                          |
| 00                                                                                                                                                                                     |          | 16.2440                           | 16.2440                         |
| ROG NOX                                                                                                                                                                                |          | 1.5728 14.3849 16.2440 0.0269     | 1.5728 14.3849 16.2440 0.0269   |
| ROG                                                                                                                                                                                    |          | 1.5728                            | 1.5728                          |
|                                                                                                                                                                                        | Category | Off-Road                          | Total                           |
|                                                                                                                                                                                        | Ö        | ō                                 |                                 |

Page 20 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.5 Building Construction - 2023
Unmitigated Construction Off-Site

| Gest alleria                               | Portugation | 1                    |                            | •                          | T.                         |
|--------------------------------------------|-------------|----------------------|----------------------------|----------------------------|----------------------------|
| C02e                                       |             | 0.0000               | 3,676.641                  | 5,487.402                  | 9,164.043<br>7             |
| N2O                                        |             |                      |                            |                            |                            |
| CH4                                        | (ay         | 0.0000               | 0.2096                     | 0.1442                     | 0.3538                     |
| Total CO2                                  | (lp/ga      | 0.0000 0.0000        | 3,671.400 3,671.400 0.2096 | 5,483.797 5,483.797<br>4 4 | 9,155.198 9,155.198<br>1 1 |
| Bio-CO2 NBio-CO2 Total CO2                 |             | 0.0000               | 3,671.400                  | 5,483.797                  | 9,155.198<br>1             |
| Bio-CO2                                    |             |                      |                            |                            |                            |
| PM2.5<br>Total                             |             | 0.000.0              | 0.2752                     | 1.6604                     | 1.9356                     |
| Exhaust<br>PM2.5                           |             | 0.0000 0.0000 0.0000 | 0.0116                     | 0.0441                     | 0.0557                     |
| PM10 Fugitive Exhaust<br>Total PM2.5 PM2.5 |             | 0.0000               | 0.2636                     | 1.6163                     | 1.8799                     |
| 2.52 1.7 2.5 3.5                           |             | 0.000.0              | 0.9277                     | 6.1411                     | 7.0688                     |
| Exhaust<br>PM10                            | lay         | 0.0000               | 0.0122                     | 0.0479                     | 0.0601                     |
| Fugitive Exhaust<br>PM10 PM10              | lb/day      | 0.0000               | 0.9156                     | 6.0932                     | 7.0088                     |
| S02.                                       |             | 0.0000               | 0.0343                     | 0.0550                     | 0.0893                     |
| တ                                          |             | 0.0000               | 3.3771                     | 17.8820                    | 21.2591                    |
| NOx                                        |             | 0.0000 0.0000 0.0000 | 9.9726                     | 1.5073                     | 11.4799                    |
| ROG                                        |             | 0.0000               | 0.3183                     | 2.5029                     | 2.8211                     |
|                                            | Category    | Hauling              | Vendor                     | Worker                     | Total                      |

| C02e                                  |          | 2,570.406<br>1                    | 2,570.406                         |
|---------------------------------------|----------|-----------------------------------|-----------------------------------|
| NZO                                   |          |                                   |                                   |
| CHA                                   | <b>A</b> | 0.6079                            | 0.6079                            |
| otal CO2                              | lb/day   | ,555.209<br>9                     | ,555.209<br>9                     |
| Bio- CO2 T                            |          | ,555.209 2<br>9                   | ,555.209 2<br>9                   |
| Sio- CO2 N                            |          | 0.0000 2,555.209 2,555.209 0.6079 | 0.0000 2,555.209 2,555.209 0.6079 |
| PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4. |          |                                   | 0.6584                            |
| Exhaust<br>PM2.5                      |          | 0.6584 0.6584                     | 0.6584                            |
| Fugitive<br>PM2.5                     |          |                                   |                                   |
| PM10<br>Total                         |          | 0.6997                            | 0.6997                            |
| Exhaust<br>PM10                       | b/day    | 0.6997 0.6997                     | 0.6997                            |
| Fugitive<br>PM10                      | )/g[]    |                                   |                                   |
| SO2                                   |          | 0.0269                            | 0.0269                            |
| S                                     |          | 16.2440                           | 16.2440                           |
| ROG NOx CO                            |          | 14.3849                           | 1.5728 14.3849 16.2440            |
| ROG                                   |          | 1.5728 14.3849 16.2440 0.0269     | 1.5728                            |
|                                       | Category | Off-Road                          | Total                             |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/12/2021 2:30 PM

3.5 Building Construction - 2023

Mitigated Construction Off-Site

| CO2e                       |          | 0.0000                | 3,676.641           | 5,487.402      | 9,164.043<br>7                |
|----------------------------|----------|-----------------------|---------------------|----------------|-------------------------------|
| NZO                        |          |                       |                     |                | :                             |
| CH4                        | à        | 0.0000                | 0.2096              | 0.1442         | 0.3538                        |
| Total CO2                  | lb/day   | 0.0000 0.0000 0.00000 | 3,671.400 3,671.400 | 5,483.797<br>4 | 9,155.198<br>1                |
| Bio-CO2 NBio-CO2 Total CO2 |          | 0.000.0               | 3,671.400<br>7      | 5,483.797      | 9,155.198 9,155.198<br>1 1    |
| Bio- CO2                   |          |                       | 1                   |                |                               |
| PM2.5<br>Total             |          | 0.0000                | 0.2752              | 1.6604         | 1.9356                        |
| Exhaust<br>PM2.5           |          | 0.0000                | 0.0116              | 0.0441         | 0.0557                        |
| Fugitive<br>PM2.5          |          | 0.0000                | 0.2636              | 1.6163         | 1.8799                        |
| PM10<br>Total              |          | 0.000.0               | 0.9277              | 6.1411         | 7.0688                        |
| Exhaust<br>PM10            | lay      | 0.000.0               | 0.0122              | 0.0479         | 0.0601                        |
| Fugitive<br>PM10           | (Ib/day  | 0.0000                | 0.9156              | 6.0932         | 7.0088                        |
| S02                        |          | 0.0000                | 0.0343              | 0.0550         | 0.0893                        |
| ဝ၁                         |          | 0.0000                | 3.3771              | 17.8820        | 21.2591                       |
| NOx                        |          | 0.000 0.0000 0.0000   | 9.9726              | 1.5073         | 2.8211 11.4799 21.2591 0.0893 |
| ROG                        |          | 0.0000                | 0.3183              | 2.5029         | 2.8211                        |
|                            | Category | Hauling               | Vendor              | Worker         | Total                         |

3.6 Paving - 2023

| C02e                                    |          | 2,225.433<br>6                  | 0.0000              | 2,225.433<br>6                |
|-----------------------------------------|----------|---------------------------------|---------------------|-------------------------------|
| N2O                                     |          |                                 |                     |                               |
| CH4                                     | y        | 0.7140                          | <br> <br> <br> <br> | 0.7140                        |
| otal CO2                                | lb/day   | ,207.584                        | 0.0000              | ,207.584                      |
| Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO26 |          | 2,207,584 2,207,584 0.7140<br>1 | }<br> <br>          | 2,207.584 2,207.584 0.7140    |
| Bio- CO2 N                              |          |                                 |                     |                               |
| PW2.5<br>Total                          |          | 0.4694                          | 0.000.0             | 0.4694                        |
| Exhaust<br>PM2.5                        |          | 0.4694                          | 0.000.0             | 0.4694                        |
| Fugitive<br>PM2.5                       |          |                                 | <br> <br> <br> <br> |                               |
| PM10<br>Total                           |          | 0.5102                          | 0.000.0             | 0.5102                        |
| Exhaust<br>PM10                         | ay       | 0.5102 0.5102                   | 0.000.0             | 0.5102                        |
| Fugitive<br>PM10                        | lb/day   |                                 |                     |                               |
| S02                                     |          | 0.0228                          |                     | 0.0228                        |
| <b>0</b> 0                              |          | 14.5842                         |                     | 14.5842                       |
| XON.                                    |          | 1.0327 10.1917 14.5842 0.0228   |                     | 1.0327 10.1917 14.5842 0.0228 |
| ROG                                     |          | 1.0327                          | 0.0000              | 1.0327                        |
|                                         | Category | Off-Road                        | Paving              | Total                         |

Page 22 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2023
Unmitigated Construction Off-Site

|                                                      | ······································ |                      |               |                               |                 |
|------------------------------------------------------|----------------------------------------|----------------------|---------------|-------------------------------|-----------------|
| CO2e                                                 |                                        | 0.0000               | 0.0000        | 102.7603                      | 102.7603        |
| .N2O                                                 |                                        |                      |               | <br> <br> <br> <br> <br> <br> |                 |
| CH4                                                  | (ay                                    | 0.0000               | 0.0000        | 2.7000 <del>c</del><br>003    | 2.7000e-<br>003 |
| Total CO2                                            | (ip/qa/                                | 0.0000 0.0000 0.0000 | 0.0000        | 102.6928                      | 102.6928        |
| Bio- CO2   NBio- CO2   Total CO2   CH44   N2O   CO2e |                                        | 0.0000               | 0.0000        | 102.6928                      | 102.6928        |
|                                                      |                                        |                      | <br>          |                               |                 |
| PM2.5<br>Total                                       |                                        | 0.000.0              | 0.000.0       | 0.0311                        | 0.0311          |
| Exhaust<br>PM2.5                                     |                                        | 0.0000               | 0.0000        | 8.3000e-<br>004               | 8.3000e-<br>004 |
| Fugitive<br>PM2.5                                    |                                        | 0.0000               | 0.0000        | 0.0303                        | 0.0303          |
| PM10<br>Total                                        |                                        | 0.0000 0.0000        | 0.0000        | 0.1150                        | 0.1150          |
| Exhaust<br>PM10                                      | lb/day                                 | 0.0000               | 0.0000        | 1 9.0000e-<br>004             | 9.0000e-<br>004 |
| Fugitive<br>PM10                                     | lb/                                    | 0.0000               | 8             | 1141                          | 0.1141          |
| 305                                                  |                                        | 0.0000               | 0.0000        | 9 1.0300e- 0.<br>003          | 1.0300e-<br>003 |
| 20 <b>s</b> 00                                       |                                        | 0.0000               | 0.0000 0.0000 | 0.3349                        | 0.3349          |
| NOx                                                  |                                        | 0.0000 0.0000 0.0000 | 0.0000        | 0.0282                        | 0.0282          |
| ROG                                                  |                                        | 0.0000               | 0.0000        | 0.0469                        | 0.0469          |
|                                                      | Category                               | Hauling              | Vendor        | Worker                        | Total           |

|                                                                       | Burth Skir |                                   |                |                                   |
|-----------------------------------------------------------------------|------------|-----------------------------------|----------------|-----------------------------------|
| CO2e                                                                  |            | 2,225.433<br>6                    | 0.0000         | 2,225.433<br>6                    |
| N2O                                                                   |            |                                   |                |                                   |
| <u>C</u>                                                              | ý          | 0.7140                            | <b></b>        | 0.7140                            |
| Total CO2                                                             | lb/day     | 2,207.584                         | 0.0000         | 2,207.584                         |
| NBio-CO2                                                              |            | 0.0000 2,207.584 2,207.584 0.7140 | <br> <br> <br> | 0.0000 2,207.584 2,207.584 0.7140 |
| Bio-CO2                                                               |            | 0.0000                            |                |                                   |
| Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O PM2.5 PM2.5 |            | 0.4694                            | 0000.0         | 0.4694                            |
| Exhaust<br>PM2.5                                                      |            | 0.4694                            | 0.0000         | 0.4694                            |
| Fugitive<br>PM2.5                                                     |            |                                   |                |                                   |
| PM10<br>Total                                                         |            | 0.5102 0.5102                     | 0.000.0        | 0.5102                            |
| gitive Exhaust<br>M10 PM10                                            | lb/day     | 0.5102                            | 0.0000         | 0.5102                            |
| G.                                                                    | )/ql       |                                   |                |                                   |
| S02                                                                   |            | 0.0228                            |                | 0.0228                            |
| 00                                                                    |            | 14.5842                           |                | 14.5842                           |
| XON                                                                   |            | 1.0327 10.1917 14.5842 0.0228     |                | 1.0327 10.1917 14.5842 0.0228     |
| ROG                                                                   |            | 1.0327                            | 0.0000         | 1.0327                            |
|                                                                       | Category   | Off-Road                          | Paving         | Total                             |

Page 23 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2023
Mitigated Construction Off-Site

| CO2e                             |          | 0.0000               | 0.0000                | 102.7603          | 102.7603           |
|----------------------------------|----------|----------------------|-----------------------|-------------------|--------------------|
| N2O                              |          |                      |                       |                   |                    |
| C <del>I</del> I                 | lay      | 0.0000               | 0.0000                | 2.7000e-<br>003   | 2.7000e-<br>003    |
| Total CO2                        | kep/ql   | 0.0000               | 0.0000                | 102.6928 102.6928 | 102.6928           |
| Bio- CO2 NBio- CO2 Total CO2 CH4 |          | 0.000.0              | 0.0000                | 102.6928          | 102.6928           |
| Bio- CO2                         |          |                      | ;<br>;<br>;<br>;<br>; | ;<br>;<br>;<br>;  |                    |
| PM2.5<br>Total                   |          | 0.0000               | 0.0000                | 0.0311            | 0.0311             |
| Exhaust<br>PM2.5                 |          |                      | 0.000.0               | 8.3000e-<br>004   | 8.3000e-<br>004    |
| Fugitive<br>PM2.5                |          | 0.000 0.0000         | 00000                 | 0.0303            | 0.0303             |
| PM10<br>Total                    |          | 0.0000               | 0.000.0               | 0.1150            | 0.1150             |
| Exhaust<br>PM10                  | lay      | 0.0000 0.0000        | 0.000.0               | 9.0000e-<br>004   | 11 9.0000e-<br>004 |
| Fugitive<br>PM10                 | . Ib/day | 0.0000               | 0.0000                | 0.11              | 0.1141             |
| S02                              |          | 0.0000               | 0.0000                | 1.0300e-<br>003   | 1.0300e-<br>003    |
| တ                                |          | 0.0000               | 0.0000                | 0.3349            | 0.3349             |
| NOx                              |          | 0.0000 0.0000 0.0000 | 0.000.0               | 0.0282            | 0.0282             |
| ROG                              |          | 0.0000               | 0.0000                | 0.0469            | 0.0469             |
|                                  | Category | Hauling              | Vendor                | Worker            | Total              |

3.6 Paving - 2024

| . CO2e                     |          | 2,225.396<br>3                      | 0.0000                                                                  | 2,225.396<br>3                    |
|----------------------------|----------|-------------------------------------|-------------------------------------------------------------------------|-----------------------------------|
| N2O                        |          |                                     |                                                                         |                                   |
| CH4                        | ay.      | 0.7140                              | <br> <br> <br> <br> <br> <br>                                           | 0.7140                            |
| Total CO2                  | lb/day   | 2,207.547<br>2                      | 0.0000                                                                  | 2,207.547<br>2                    |
| Bio-CO2 NBio-CO2 Total CO2 |          | 2,207.547 2,207.547 0.7140<br>2 2 2 | }<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 2,207.547 2,207.547 0.7140<br>2 2 |
| Bio-CO2                    |          |                                     |                                                                         |                                   |
| PM2.5<br>Total             |          | 0.4310                              | 0.0000                                                                  | 0.4310                            |
| Exhaust<br>PM2.5           |          | 0.4310 0.4310                       | 0.000.0                                                                 | 0.4310                            |
| Fugitive<br>PM2.5          |          |                                     | <b>;</b><br> <br> <br> <br> <br> <br> <br>                              |                                   |
| PM10<br>Total              |          | 0.4685                              | 0.000.0                                                                 | 0.4685                            |
| Exhaust<br>PM10            | lay      | 0.4685 0.4685                       | 0.0000                                                                  | 0.4685                            |
| Fugitive<br>PM10           | lb/day   |                                     |                                                                         |                                   |
| SO2 FI                     |          | 0.0228                              |                                                                         | 0.0228                            |
| CO                         |          | 14.6258                             |                                                                         | 9.5246 14.6258                    |
| ROG NOX CO                 |          | 9.5246                              |                                                                         |                                   |
| ROG                        |          | 0.9882 9.5246 14.6258 0.0228        | 0.0000                                                                  | 0.9882                            |
|                            | Category | Off-Road                            | Paving                                                                  | Total                             |

Page 24 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2024
Unmitigated Construction Off-Site

| TOTAL ST                   | Lange e  |                      |                       |                   |                 |
|----------------------------|----------|----------------------|-----------------------|-------------------|-----------------|
| CO2e                       |          | 0.0000               | 0.0000                | 99.5663           | 99.5663         |
| NZO                        |          |                      |                       |                   |                 |
| CH4                        | жe       | 0.0000               | 0.0000                | 2.4700e-<br>003   | 2.4700e-<br>003 |
| Total CO2                  | /kep/ql  | 0.0000 1 0.0000      | 0.0000                | 99.5045           | 99.5045         |
| Bio-CO2 NBio-CO2 Total CO2 |          | 0.0000               | 0.0000                | 99.5045           | 99.5045         |
| Bio- CO2                   |          |                      | 1<br>1<br>1<br>1<br>1 |                   |                 |
| PM2.5<br>Total             |          | 0.0000               | 0.000.0               | 0.0311            | 0.0311          |
| Exhaust<br>PM2.5           |          | 0.0000               | 0.0000                | 8.1000e- (<br>004 | 8.1000e-<br>004 |
| Fugitive<br>PM2.5          |          | 0.0000               | 0.0000                | 0.0303            | 0.0303          |
| PM10<br>Total              |          | 0.000.0              | 0.000.0               | 0.1150            | 0.1150          |
| Exhaust<br>PM10            | lb/day   | 0.0000               | 0.0000                | 8.8000e-<br>004   | 8.8000e-<br>004 |
| Fugitive<br>PM10           | /QI      | 0.0000               | 0.0000                | 0.1141            | 0.1141          |
| 205 00                     |          | 0.0000               | 0.0000                | 4 1.0000e-<br>003 | 1.0000e-<br>003 |
| တ                          |          | 0.0000               | 0.000                 | 0.3114            | 0.3114 1.0000e- |
| ROG NOX                    |          | 0.0000 0.0000 0.0000 | 0.000 0.0000          | 0.0257 0.3114     | 0.0257          |
| ROG                        |          | 0.0000               | 0.0000                | 0.0444            | 0.0444          |
|                            | Category | Hauling              | Vendor                | Worker            | Total           |

| PM10 Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N20 CO2e. | , Kepiqi   | 0.0000 2,207.547 2,207.547 0.7140 2,225.396 | 0.0000        | 207.547 0.7140 2,225.396<br>2                      |
|----------------------------------------------------------------------|------------|---------------------------------------------|---------------|----------------------------------------------------|
| 32 NBio-CO2 T.                                                       |            | 0 2,207,547 2,<br>2                         |               | 0.4310 0.4310 0.0000 2,207.547 2,207.547 2,207.547 |
| 5 Bio-C(                                                             |            |                                             | <b>******</b> | 0.000                                              |
| ust PM2.                                                             |            | 0.4310 0.4310                               | 0.0000        | 10 0.431                                           |
| ugitive Exha<br>PM2.5 PM2                                            |            | 0.43                                        | 0.0000        | 0.43                                               |
| PM10 F                                                               |            | 0.4685                                      | 0.0000        | 0.4685                                             |
| Exhaust<br>PM:10                                                     | lb/day     | 0.4685                                      | 0.0000        | 0.4685                                             |
| Fugitive<br>PM10                                                     | <b>q</b> l |                                             |               |                                                    |
| S02                                                                  |            | 3 0.0228                                    | ·             | 3 0.0228                                           |
| 00                                                                   |            | 0.9882 9.5246 14.6258 0.0228                |               | 0.9882 9.5246 14.6258 0.0228                       |
| NOx                                                                  |            | 2 9.5246                                    |               | 9.5246                                             |
| ROG                                                                  |            | 0.9882                                      | 0.0000        | 0.9882                                             |
|                                                                      | Category   | Off-Road                                    | Paving        | Total                                              |

Page 25 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.6 Paving - 2024
Mitigated Construction Off-Site

| Feder A Checon                  | <i>1877</i> (10 10 10 1 |                      | ,       |                            | y                      |
|---------------------------------|-------------------------|----------------------|---------|----------------------------|------------------------|
| CO2e                            |                         | 0.0000               | 0.0000  | 99.5663                    | 99.5663                |
| N2O                             |                         |                      |         | ,                          |                        |
| CH4                             | , se                    | 0.000                | 0.000.0 | 2.4700 <del>c</del><br>003 | 2.4700e-<br>003        |
| Total CO2                       | lbiday                  | 0.000.0              | 0.000.0 | 99.5045                    | 99.5045                |
| NBio-CO2                        |                         | 0.000.0              | 0.0000  | 99.5045                    | 99.5045                |
| Bio- CO2 NBio- CO2 Total CO2    |                         |                      |         |                            |                        |
| PM2.5<br>Total                  |                         | 0.000.0              | 0.000.0 | 0.0311                     | 0.0311                 |
| Exhaust<br>PM2.5                |                         | 0.0000               | 0.0000  | 8.1000e-<br>004            | 8.1000e-<br>004        |
| Fugitive Exhaust<br>PM2.5 PM2.5 |                         | 0.000.0              | 0.000   | 0.0303                     | 0.0303                 |
| PM10<br>Total                   |                         | 0.0000               | 0.000.0 | 0.1150                     | 0.1150                 |
| Exhaust<br>PM10                 | lay                     | 0.0000               | 0.0000  | 8.8000e-<br>004            | 8.8000e-<br>004        |
| Fugitive<br>PM10                | lb/day                  | 0.0000               | 0.0000  | 0.1141                     | 0.1141                 |
| S02                             |                         | 0.0000               | 0.000.0 | 1.0000e- 0.<br>003         | 0.3114 1.0000e-<br>003 |
| တ                               |                         | 0.0000               | 0.0000  | 0.3114                     | 0.3114                 |
| ROG NOX                         |                         | 0.0000 0.0000 0.0000 | 0.0000  | 0.0257                     | 0.0257                 |
| ROG                             |                         | 0.0000               | 0.0000  | 0.0444                     | 0.0444                 |
|                                 | Category                | Haufing              | Vendor  | Worker                     | Total                  |

# 3.7 Architectural Coating - 2024

| CO2e                                                 |          | 0.0000                   | 281.8443               | 281.8443                               |
|------------------------------------------------------|----------|--------------------------|------------------------|----------------------------------------|
| N20                                                  |          |                          | *                      |                                        |
| CH4                                                  | lb/day   |                          | 0.0159                 | 0.0159                                 |
| Total CO2                                            | ygı:     | 0.000.0                  | 281.4481 281.4481      | 281.4481 281.4481                      |
| Bio- CO2   NBio- CO2   Total CO2   CH4               |          |                          | 281,4481               | 281.4481                               |
| Bio-CO2                                              |          |                          |                        |                                        |
| t PM2.5<br>Total                                     |          | 0.0000                   | 0.0609                 | 6090'0                                 |
| Exhaust PM10 Fugitive Exhaust PM10 Total PM2.5 PM2.5 |          | 0.000.0                  | 0.0609                 | 0.0609                                 |
| Fugitive<br>PM2.5                                    |          |                          |                        |                                        |
| PM10<br>Total                                        |          | 0.0000                   | 0.0609                 | 6090'0                                 |
| Exhaust<br>PM10                                      | lb/day   | 0.0000                   | 0.0609                 | 6090'0                                 |
| Fugitive<br>PM10                                     | /gl      |                          |                        |                                        |
| 802                                                  |          |                          | 2.9700e-<br>003        | 2.9700e-<br>003                        |
| 00                                                   |          |                          | 1.8101 2.9700e-<br>003 | 1.8101                                 |
| ROG NOX CO                                           |          |                          | 1.2188                 | 1.2188                                 |
| ROG                                                  |          | 236.4115                 | 0.1808                 | 236.5923 1.2188 1.8101 2.9700e-<br>003 |
|                                                      | Category | Archit. Coating 236.4115 | Off-Road               | Total                                  |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Date: 1/12/2021 2:30 PM

3.7 Architectural Coating - 2024
Unmitigated Construction Off-Site

| Type years                                                       | ∎egsat Sit | _                    |                       |                             |                            |
|------------------------------------------------------------------|------------|----------------------|-----------------------|-----------------------------|----------------------------|
| CO2e                                                             |            | 0.0000               | 0.0000                | 1,062.041                   | 1,062.041<br>0             |
| N2O CO2e                                                         |            |                      |                       | <br>                        |                            |
| CH4                                                              | Ĉe .       | 0.000.0              | 0.0000                | 0.0264                      | 0.0264                     |
| Total CO2                                                        | lb/day     | 0.0000 0.0000 0.0000 | 0.0000                | 1,061.381<br>8              | 1,061.381 1,061.381<br>8 8 |
| Bio-CO2 NBio-CO2 Total CO2 CH4                                   |            | 0.000.0              | 0.0000                | 1,061.381 1,061.381<br>8 8  | 1,061.381<br>8             |
| Bio-CO2                                                          |            |                      | :<br>:<br>:<br>:<br>: |                             |                            |
| Exhaust PM10 Fugitive Exhaust PM2.5 PM10 Total PM2.5 PM2.5 Total |            | 0.000.0              | 0.0000                | 0.3315                      | 0.3315                     |
| Exhaust<br>PM2.5                                                 |            | 0.0000 0.0000 0.0000 | 0.0000                | 8.6800e-<br>003             | 8.6800e-<br>003            |
| Fugitive<br>PM2.5                                                |            | 0.0000               | 0.0000                | 0.3229                      | 0.3229                     |
| PW10<br>Total                                                    |            | 0.0000               | 0.0000                | 2266                        | 1.2266                     |
| Exhaust<br>PM10                                                  | Jay        | 0.0000               | 0.0000                | 9.4300e-<br>003             | 9.4300e- 1.<br>003         |
| Fugitive<br>PM10                                                 | lb/day     | 0.0000               | 0.0000                | 1.2171                      | 1.2171                     |
| S02                                                              |            | 0.0000               | 0.0000                | 0.0107                      | 0.0107                     |
| NOx CO SO2 Fugitive<br>PM10                                      |            | 0.0000 0.0000 0.0000 | 0.0000 0.0000         | 0.4734 0.2743 3.3220 0.0107 | 3.3220                     |
|                                                                  |            | 0.0000               | 0.0000                | 0.2743                      | 0.2743                     |
| ROG                                                              |            | 0.0000               | 0.0000                | 0.4734                      | 0.4734                     |
|                                                                  | Category   | Hauling              | Vendor                | Worker                      | Total                      |

|                            |          |                          |                          | _                               |
|----------------------------|----------|--------------------------|--------------------------|---------------------------------|
| CO2e                       |          | 0.0000                   | 281.8443                 | 281.8443                        |
| NZO                        |          |                          |                          |                                 |
| CH4                        | se       |                          | 0.0159                   | 0.0159                          |
| Total CO2                  | lb/day   | 0.0000                   | 281.4481                 | 281.4481                        |
| NBio-CO2                   |          |                          | 281.4481 281.4481 0.0159 | 0.0000 281.4481 281.4481        |
| Bio-CO2 NBio-CO2 Total CO2 |          |                          | 0.000.0                  | 0.0000                          |
| PM2.5<br>Total             |          | 00000                    | 6090.0                   | 0.0609                          |
| Exhaust<br>- PM2.5         |          | 0.0000                   | 6090.0                   | 6090.0                          |
| Fugitive<br>PM2.5          |          |                          | <br>                     |                                 |
| PM10<br>Total              |          | 0.000.0                  | 0.0609                   | 6090'0                          |
| Exhaust<br>PM10            | ay       | 0.0000 0.0000            | 0.0609                   | 0.0609                          |
| Fugitive<br>PM10           | lb/day   |                          |                          |                                 |
| S02                        |          |                          | 1.8101 2.9700e-<br>003   | 2.9700e-<br>003                 |
| 00                         |          |                          | 1.8101                   | 1.8101                          |
| NOX                        |          |                          | 1.2188                   | 1.2188                          |
| ROG                        |          | 236.4115                 | 0.1808                   | 236.5923 1.2188 1.8101 2.9700e- |
|                            | Category | Archit. Coating 236.4115 | Off-Road                 | Total                           |

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

3.7 Architectural Coating - 2024
Mitigated Construction Off-Site

| C02e                           |               | 0.0000               | 0.0000        | 1,062.041                  | 1,062.041<br>0             |
|--------------------------------|---------------|----------------------|---------------|----------------------------|----------------------------|
| N2O                            |               |                      |               |                            |                            |
| CH4                            | lay           | 0.0000               | 0.0000        | 0.0264                     | 0.0264                     |
| Total CO2                      | (Ib/day       | 0.000.0              | 0.000.0       | 1,061.381 1,061.381<br>8 8 | 1,061.381 1,061.381<br>8 8 |
| Bio-CO2 NBio-CO2 Total-CO2 CH4 |               | 0.000                | 0.000.0       | 1,061.381<br>8             | 1,061.381<br>8             |
| Bio-co2                        |               |                      |               |                            |                            |
| PM2.5<br>Total                 |               | 0.000                | 0.000.0       | 0.3315                     | 0.3315                     |
| Exhaust<br>PM2.5               |               | 0.000.0              | 0.0000        | 8.6800e-<br>003            | 8.6800e-<br>003            |
| Fugitive<br>PM2.5              |               | 0.0000               | 0.000.0       | 0.3229                     | 0.3229                     |
| PM10<br>Total                  |               | 0.000.0              | 0.000.0       | 1.2266                     | 1.2266                     |
| Exhaust<br>PM10                | lb/day        | 0.0000 0.0000 0.0000 | 0.000.0       | 9.4300e-<br>003            | 9.4300e-<br>003            |
| ugitive<br>PM10                | )/ <b>q</b> l | 0.0000               | 0.000.0       | 1.2171                     | 1.2171                     |
| CO SO2 F                       |               | 0.000.0              | 0.000.0       | 0.0107                     | 0.0107                     |
| 00                             |               | 0.0000 0.0000 0.0000 | 0.0000        | 3.3220                     | 3.3220                     |
| XON                            |               | 0.0000               | 0.0000 0.0000 | 0.2743                     | 0.4734 0.2743              |
| ROG                            |               | 0.0000               | 0.0000        | 0.4734                     | 0.4734                     |
|                                | Category      | Hauling              | Vendor        | Worker                     | Total                      |

# 4.0 Operational Detail - Mobile

# 4.1 Mitigation Measures Mobile

Page 28 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| C02e                                    | 47,972.68<br>39                               | 47,972.68<br>39                       |
|-----------------------------------------|-----------------------------------------------|---------------------------------------|
| N2O                                     |                                               | h                                     |
| CH4                                     | 2.1953                                        | 2.1953                                |
| Total CO2                               | 47,917.80<br>05                               | 47,917.80 47,917.80 2.1953<br>05 05   |
| NBio-CO2                                | 47,917.80 47,917.80 2.1953<br>05 05           | 47,917.80<br>05                       |
| Bio-CO2 NBio-CO2 Total CO2 CH4          |                                               |                                       |
| PM2.5<br>Total                          | 12.6083                                       | 12.6083                               |
| Fugilive Exhaust PM2.5                  | 15.9592 0.3373 46.2965 12.2950 0.3132 12.6083 | 0.3373 46.2965 12.2950 0.3132 12.6083 |
| Fugitive<br>PMZ.5                       | 12.2950                                       | 12.2950                               |
| PM10<br>Total                           | 46.2965                                       | 46.2965                               |
| rigitive Exhaust<br>PM10 PM10<br>Ib/day | 0.3373                                        | 0.3373                                |
| Fugitive<br>PM10                        | 7                                             | 45.9592                               |
| SO2                                     | 0.4681                                        | 0.4681                                |
| 8                                       | 110.0422                                      | 110.0422                              |
| ROG NOx CO SO2                          | 9.5233 45.9914 110.0422 0.4681                | 9.5233 45.9914 110.0422 0.4681        |
| ROG                                     | 9.5233                                        | 9.5233                                |
| Categoty                                | Mitigated                                     | Unmitigated                           |

# 4.2 Trip Summary Information

|                                     | Aver     | Average Daily Trip Rate | le .     | Unmitigated | Mitigated  |
|-------------------------------------|----------|-------------------------|----------|-------------|------------|
| Land Use                            | Weekday  | Saturday                | Sunday   | Annual VMT  | Annual WMT |
| Apartments Low Rise                 | 145.75   | 154.25                  | 154.00   | 506,227     | 506,227    |
| Apartments Mid Rise                 | 4,026.75 | 3,773.25                | 4075.50  | 13,660,065  | 13,660,065 |
| General Office Building             | 288.45   | 62.55                   | 31.05    | 706,812     | 706,812    |
| High Turnover (Sit Down Restaurant) | 2,368.80 | 2,873.52                | 2817.72  | 3,413,937   | 3,413,937  |
| Hotel                               | 192.00   | 187.50                  | 160.00   | 445,703     | 445,703    |
| Quality Restaurant                  | 501.12   | 511.92                  | 461.20   | 707,488     | 707,488    |
| Regional Shopping Center            | 528.08   | 601.44                  | 357.84   | 1,112,221   | 1,112,221  |
| Total                               | 8,050.95 | 8,164.43                | 8,057.31 | 20,552,452  | 20,552,452 |
|                                     |          |                         |          |             |            |

## 4.3 Trip Type Information

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| [140/02        | Keigh                                                | 1                   |                     |                         |                         |       |                    |                          |
|----------------|------------------------------------------------------|---------------------|---------------------|-------------------------|-------------------------|-------|--------------------|--------------------------|
| % e            | Pass-by                                              | က                   | 9                   | 4                       | 43                      | 4     | 44                 | 11                       |
| Trip Purpose % | Diverted                                             | 11                  | Ξ                   | 19                      | 20                      | 38    | 48                 | 35                       |
|                | Primary                                              | 98                  | 98                  | 77                      | 37                      | 58    | 38                 | 54                       |
|                | or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW | 40.60               | 40.60               | 19.00                   | 19.00                   | 19.00 | 19.00              | 19.00                    |
| Trip %         | H-S or C-C                                           | 19.20               | 19.20               | 48.00                   | 72.50                   | 61.60 | 00.69              | 64.70                    |
|                | H-W or C-W                                           | 40.20               | 40.20               | 33.00                   | 8.50                    | 19.40 | 12.00              | 16.30                    |
|                | H-O or C-NW                                          | 8.70                | 8.70                | 6.90                    | 6.90                    | 6.90  | 9.90               | 6.90                     |
| Miles          | H-S or C-C                                           | 5.90                | 5.90                | 8.40                    | 8.40                    | 8.40  | 8.40               | 8.40                     |
|                | H-W or C-W H-S                                       | 14.70               | 14.70               | 16.60                   | 16.60                   | 16.60 | 16.60              | 16.60                    |
|                | Land Use                                             | Apartments Low Rise | Apartments Mid Rise | General Office Building | High Turnover (Sit Down | Hotel | Quality Restaurant | Regional Shopping Center |

### 4.4 Fleet Mix

| Land Use                               | LDA                                                                                                                  | LDA LDT1 LDT2              |          | MDV      | MDV LHD1 LHD2 MHD HHP OBUS                                                                                           | LHD2     | MHD      | HHD      | OBUS     | UBUS MCY | MCY      | SBNS     | MH       |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------|----------|----------|----------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Apartments Low Rise                    | 0.543088                                                                                                             | 0.044216                   | 0.209971 | 0.116369 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.005285 | 0.000712 | 0.000821 |
| Apartments Mid Rise                    | 0.543088                                                                                                             | .543088 0.044216           | 0.209971 | 0.116369 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.005285 | 0.000712 | 0.000821 |
| General Office Building                | 0.543088                                                                                                             | 0.543088 0.044216 0.209971 | 0.209971 | 0.116369 | 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712                                     | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.005285 | 0.000712 | 0.000821 |
| High Turnover (Sit Down<br>Restaurant) | 0.543088                                                                                                             | 0.044216                   | 0.209971 | 0.116369 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.005285 | 0.000712 | 0.000821 |
| Hotel                                  | 0.543088                                                                                                             | 0.044216                   | 0.209971 | 0.116369 | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.005285 | 0.000712 | 0.000821 |
| Quality Restaurant                     | 0.543088                                                                                                             | 0.044216                   | 0.209971 | 0.116369 | 0.543088 0.04216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712           | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.005285 | 0.000712 | 0.000821 |
| Regional Shopping Center               | 0.543088 0.044216 0.209971 0.116369 0.014033 0.006332 0.021166 0.033577 0.002613 0.001817 0.005285 0.000712 0.000821 | 0.044216                   | 0.209971 | 0.116369 | 0.014033                                                                                                             | 0.006332 | 0.021166 | 0.033577 | 0.002613 | 0.001817 | 0.005285 | 0.000712 | 0.000821 |
|                                        |                                                                                                                      |                            |          |          |                                                                                                                      |          |          |          |          |          |          |          |          |

### 5.0 Energy Detail

Historical Energy Use: N

# 5.1 Mitigation Measures Energy

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

| CO2e                            |          | 8,405.638<br>7                              | 8,405.638                  |
|---------------------------------|----------|---------------------------------------------|----------------------------|
| N2O CO2e                        |          | 8,355,983 8,355,983 0.1602 0.1532 8,405,638 | 0.1532 8,405.638           |
| CH4                             | lay      | 0.1602                                      | 0.1602                     |
| Total CO2                       | )/qı     | 8,355.983<br>2                              | 8,355.983 8,355.983 0.1602 |
| Bio-CO2 NBio-CO2 Total CO2 CH4  | ÷        | 8,355.983<br>2                              | 8,355.983<br>2             |
| Bio-CO2                         |          |                                             |                            |
| t PM2.5<br>Total                |          | 0.5292                                      | 0.5292                     |
| Fugitive Exhaust<br>PM2.5 PM2.5 |          | 0.5292                                      | 0.5292                     |
| Fugitive<br>PM2.5               |          |                                             |                            |
| PM10<br>Total                   |          | 0.5292                                      | 0.5292                     |
| Exhaust<br>PM10                 | day      | 0.5292                                      | 0.5292                     |
| Fugitive<br>PM10                | (D)      |                                             |                            |
| S02                             |          | 0.0418                                      | 0.0418                     |
| တ                               |          | 4.2573                                      | 4.2573 0.0418              |
| ROG NOX                         |          | 0.7660 6.7462 4.2573 0.0418                 | 0.7660 6.7462              |
| ROG                             |          | 0.7660                                      | 0.7660                     |
|                                 | Category | NaturalGas<br>Mitigated                     | NaturalGas<br>Unmitigated  |

Page 31 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas

5.2 Energy by Land Use - Na Unmitigated

| CO2e                         |          | 132.4486                   | 4,234.933<br>9                          | 51.8884                    | 2,693.546                              | 564.4782        | 598.5658              | 29.7778                               | 8,405.638<br>7 |
|------------------------------|----------|----------------------------|-----------------------------------------|----------------------------|----------------------------------------|-----------------|-----------------------|---------------------------------------|----------------|
|                              |          | <b>}</b>                   | t                                       | ·                          | ţ·                                     | † ·             | †                     | j                                     |                |
| NZO                          |          | 2.4100e-<br>003            | 0.0772                                  | 2.7700e-<br>003            | 0.0491                                 | 0.0103          | 0.0109                | 5.4000e-<br>004                       | 0.1532         |
| CH4                          | á        | 2.5200e-<br>003            | 0.0807                                  | 2.8900e-<br>003            | 0.0513                                 | 0.0108          | 0.0114                | 5.7000e-<br>004                       | 0.1602         |
| Total CO2                    | . Ib/day | 131.6662 131.6662 2.5200e- | 4,209.916<br>4                          | 150.9911                   | 2,677.634                              | 561.1436        | 595.0298              | 29.6019                               | 8,355.983      |
| Bio- CO2 NBio- CO2 Total CO2 |          | 131.6662                   | 4,209.916                               | 150.9911                   | 2,677.634<br>2                         | 561.1436        | 595.0298              | 29.6019                               | 8,355.983<br>2 |
| Bio-CO2                      |          |                            | * • • • • • • • • • • • • • • • • • • • | ;<br>;<br>;<br>;           |                                        |                 |                       | • • • • • • • • • • • • • • • • • • • |                |
| PM2.5<br>Total               |          | 8.3400e-<br>003            | 0.2666                                  | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003                       | 0.5292         |
| Exhaust<br>PM2.5             |          | 8.3400e-<br>003            | 0.2666                                  | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003                       | 0.5292         |
| Fugitive<br>PM2.5            |          |                            |                                         |                            |                                        |                 |                       |                                       |                |
| PM10<br>Total                |          | 8.3400e-<br>003            | 0.2666                                  | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003                       | 0.5292         |
| Exhaust<br>PM10              | lb/day   | 8.3400e-<br>003            | 0.2666                                  | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003                       | 0.5292         |
| Fugitive<br>PM10             | /gi      |                            |                                         |                            |                                        |                 |                       |                                       |                |
| S02                          |          | 6.6000e-<br>004            | 0.0211                                  | 7.5000e-<br>004            | 0.0134                                 | 2.8100e-<br>003 | 2.9800e-<br>003       | 1.5000e-<br>004                       | 0.0418         |
| 00                           |          | 0.0439                     | 1.4033                                  | 0.1057                     | 1.8743                                 | 0.3928          | 0.4165                | 0.0207                                | 4.2573         |
| XON                          |          | 0.1031                     | 3.2978                                  | 0.1258                     | 2.2314                                 | 0.4676          | 0.4959                | 0.0247                                | 6.7463         |
| ROG                          |          | 0.0121                     | 0.3859                                  | 0.0138                     | 0.2455                                 | 0.0514          | 0.0545                | 2.7100 <del>c</del><br>003            | 0.7660         |
| NaturalGa<br>s Use           | kBTU/yr  | 1119.16                    | 35784.3                                 | 1283.42                    | 22759.9                                | 4769.72         | 5057.75               | 251.616                               |                |
|                              | Land Use | Apartments Low<br>Rise     | Apartments Mid<br>Rise                  | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel           | Quality<br>Restaurant | Regional<br>Shopping Center           | Total          |

Page 32 of 35 CalEEMod Version: CalEEMod.2016.3.2

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas

Mitigated

| C02e                       |              | 132.4486                    | 4,234.933<br>9               | 151.8884                   | 2,693.546                              | 564.4782        | 598.5658              | 29.7778                     | 8,405.638<br>7 |
|----------------------------|--------------|-----------------------------|------------------------------|----------------------------|----------------------------------------|-----------------|-----------------------|-----------------------------|----------------|
| N2O                        |              | 2.4100e-<br>003             | 0.0772                       | 2.7700e-<br>003            | 0.0491                                 | 0.0103          | 0.0109                | 5.4000e-<br>004             | 0.1532         |
| CH4                        | Poptasi      | 2.5200 <del>c-</del><br>003 | 0.0807                       | 2.8900e-<br>003            | 0.0513                                 | 0.0108          | 0.0114                | 5.7000e-<br>004             | 0.1602         |
| Total CO2                  | ) <b>[</b> ] | 131.6662                    | 4,209.916<br>4               | 150.9911                   | 2,677.634<br>2                         | 561.1436        | 595.0298              | 29.6019                     | 8,355,983<br>2 |
| Bio-CO2 NBio-CO2 Total CO2 |              | 131.6662                    | 4,209.916 • 4,209.916<br>4 4 | 150.9911                   | 2,677.634                              | 561.1436        | 595.0298              | 29.6019                     | 8,355.983<br>2 |
| Bio-CO2                    |              |                             |                              |                            |                                        |                 |                       |                             |                |
| PM2.5<br>Total             |              | 8.3400e-<br>003             | 0.2666                       | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700 <del>e-</del><br>003 | 0.5292         |
| Exhaust<br>PM2.5           |              | 8.3400 <del>c</del><br>003  | 0.2666                       | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700 <del>c</del><br>003  | 0.5292         |
| Fugitive<br>PM2.5          |              |                             |                              |                            |                                        |                 |                       | <b>-</b>                    |                |
| PM10<br>Total              |              | 8.3400e-<br>003             | 0.2666                       | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700e-<br>003             | 0.5292         |
| Exhaust<br>PM10            | lb/day       | 8.3400 <del>c</del><br>003  | 0.2666                       | 9.5600e-<br>003            | 0.1696                                 | 0.0355          | 0.0377                | 1.8700 <del>e-</del><br>003 | 0.5292         |
| Fugitive<br>PM10           | <b>/9</b> l  |                             |                              |                            |                                        |                 |                       |                             |                |
| S02                        |              | 6.6000e-<br>004             | 0.0211                       | 7.5000e-<br>004            | 0.0134                                 | 2.8100e-<br>003 | 2.9800e-<br>003       | 1.5000e-<br>004             | 0.0418         |
| 00                         |              | 0.0439                      | 1.4033                       | 0.1057                     | 1.8743                                 | 0.3928          | 0.4165                | 0.0207                      | 4.2573         |
| NOX                        |              | 0.1031                      | 3.2978                       | 0.1258                     | 2.2314                                 | 0.4676          | 0.4959                | 0.0247                      | 6.7463         |
| ROG                        |              | 0.0121                      | 0.3859                       | 0.0138                     | 0.2455                                 | 0.0514          | 0.0545                | 2.7100 <del>c.</del><br>003 | 0.7660         |
| NaturalGa<br>s Use         | kBTU/yr      | 1.11916                     | 35.7843                      | 1.28342                    | 22.7599                                | 4.76972         | 5.05775               | 0.251616                    |                |
|                            | Land Use     | Apartments Low<br>Rise      | Apartments Mid<br>Rise       | General Office<br>Building | High Turnover (Sit<br>Down Restaurant) | Hotel           | Quality<br>Restaurant | Regional<br>Shopping Center | Total          |

6.0 Area Detail

## 6.1 Mitigation Measures Area

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

Page 33 of 35

Date: 1/12/2021 2:30 PM

1.5974 1.5974 0.0000 18,148.59 18,148.59 0.4874 0.3300 18,259.11 50 50 50 50 50 92 0.0000 18,148.59 18,148.59 0.4874 0.3300 18,259.11 50 50 92 N20 CH4 -lb/day Bio- CO2 NBio- CO2 Total CO2 1.5974 PM2.5 Total Exhaust PM2.5 1.5974 1.5974 1.5974 1.5974 1.5974 lb/day Unmitigated 30.5020 15.0496 88.4430 0.0944 30.5020 15.0496 88.4430 0.0944 တ ROG Mitigated Category

6.2 Area by SubCategory

Unmitigated

| COZe                         |             | 0.0000                   | 0.0000                                 | 18,106.96<br>50                            | 152.1542          | 18,259.11<br>92 |
|------------------------------|-------------|--------------------------|----------------------------------------|--------------------------------------------|-------------------|-----------------|
| N2O                          |             |                          |                                        | 0.3300                                     |                   | 0.3300          |
| CH4                          | ay.         |                          |                                        | 0.3450                                     | 0.1424            | 0.4874          |
| Total CO2                    | lb/day      | 0.0000                   | 0.000.0                                | 18,000.00<br>00                            | 148.5950          | 18,148.59<br>50 |
| Bio-CO2 NBio-CO2 Total CO2   |             |                          |                                        | 18,000.00 18,000.00<br>00 00               | 148.5950 148.5950 | 18,148.59<br>50 |
| Bio-CO2                      |             |                          | <br>                                   | 0.0000                                     |                   | 0.000           |
| PM2.5<br>Total               |             | 0.000                    | 0.000.0                                | 1.1400                                     | 0.4574            | 1.5974          |
| Exhaust<br>PM2.5             |             | 0.000.0                  | 0.000.0                                | 1.1400                                     | 0.4574            | 1.5974          |
| PM10 Fugitive<br>Total PM2.5 |             |                          | <b>†</b><br>1<br>1<br>1<br>1<br>1<br>1 | <b> </b><br> <br> <br> <br> <br> <br> <br> |                   |                 |
| 15.0405.88                   |             | 0.0000                   | 0.0000                                 | 1.1400                                     | 0.4574            | 1.5974          |
| CO SO2 Fugitive Exhaust PM10 | lay         | 0.0000                   | 0.0000                                 | 1.1400                                     | 0.4574            | 1.5974          |
| Fugitive<br>PM10             | lb/day      |                          | <br> <br> <br> <br> <br> <br> <br>     |                                            |                   |                 |
| s02                          |             |                          |                                        | 0.090.0                                    | 4.3600e-<br>003   | 0.0944          |
| පි                           |             |                          |                                        | 6.0000                                     | 82.4430           | 88.4430         |
| ROG NOx                      |             |                          | F                                      | 14.1000 6.0000 0.0900                      | 0.9496            | 15.0496         |
| ROG                          |             | 2.2670                   | 24.1085                                | 1.6500                                     | 2.4766            | 30.5020         |
|                              | SubCategory | Architectural<br>Coating | Consumer                               | Hearth                                     | Landscaping       | Total           |

Page 34 of 35

Date: 1/12/2021 2:30 PM

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

6.2 Area by SubCategory

**Mitigated** 

| FEET STATES                    | Bushing and Sa |                          |                      | ,                            |                         |                 |
|--------------------------------|----------------|--------------------------|----------------------|------------------------------|-------------------------|-----------------|
| CO2e                           |                | 0.0000                   | 0.0000               | 18,106.96<br>50              | 152.1542                | 18,259.11<br>92 |
| NZO                            |                |                          |                      | 0.3300                       | [<br>]<br>]<br>!<br>!   | 0.3300          |
| CH4                            | ay             |                          |                      | 0.3450                       | 0.1424                  | 0.4874          |
| Total CO2                      | l5/day         | 0.000.0                  | 0.0000               | 18,000.00                    | 148.5950                | 18,148.59<br>50 |
| Bio-CO2 NBio-CO2 Total CO2 CH4 |                |                          | <br>                 | 18,000.00 18,000.00<br>00 00 | 148.5950                | 18,148.59<br>50 |
| Bio-CO2                        |                |                          | i<br>i<br>i          | 0.0000                       |                         | 0.0000          |
| PM2.5<br>Total                 |                | 0.000                    | 0.0000               | 1.1400                       | 0.4574                  | 1.5974          |
| Exhaust<br>PM2.5               |                | 0.0000                   | 0.0000               | 1.1400                       | 0.4574                  | 1.5974          |
| Fugitive<br>PM2.5              |                |                          |                      |                              |                         |                 |
| PM10.<br>Total                 |                | 0.0000                   | 0.000.0              | 1.1400                       | 0.4574                  | 1.5974          |
| Exhaust<br>PM10                | lb/day         | 0.0000                   | 0.0000               | 1.1400                       | 0.4574                  | 1.5974          |
| Fugitive<br>PM10               | //q!           |                          |                      |                              |                         |                 |
| .S02                           |                |                          |                      | 0.0900                       | 4.3600e-<br>003         | 0.0944          |
| හ                              |                |                          |                      | 6.0000                       | 82.4430 4.3600e-<br>003 | 88.4430         |
| NOX                            |                |                          |                      | 14.1000 6.0000               | 0.9496                  | 15.0496         |
| ROG                            |                | 2.2670                   | 24.1085              | 1.6500                       | 2.4766                  | 30.5020         |
|                                | SubCategory    | Architectural<br>Coating | Consumer<br>Products | Hearth                       | Landscaping             | Total           |

### 7.0 Water Detail

# 7.1 Mitigation Measures Water

### 8.0 Waste Detail

# 8.1 Mitigation Measures Waste

## 9.0 Operational Offroad

|   | 433                   |
|---|-----------------------|
|   | Φ                     |
| i | Ţ                     |
|   | jen<br>Pr             |
|   |                       |
|   |                       |
|   | 2                     |
|   | actc                  |
|   | P F                   |
|   | ř                     |
|   | sir<br>S              |
|   |                       |
|   | <b>6</b>              |
|   | νο <sub>C</sub>       |
|   | şe                    |
|   | 후                     |
| ı |                       |
| i |                       |
| ı |                       |
| ı | Ē                     |
|   | ĕ<br>∑                |
|   | Jays                  |
|   |                       |
|   |                       |
|   | 19.4                  |
|   |                       |
|   | Эау                   |
|   | l/su                  |
|   | 오                     |
|   |                       |
|   |                       |
|   | \$ 15 T               |
|   | jo                    |
|   | Numb                  |
|   | Ž                     |
|   |                       |
|   |                       |
|   |                       |
|   |                       |
|   | ψ.                    |
| ı | 조                     |
|   | oment Ty <sub>l</sub> |
| ı |                       |
|   | Equi                  |
| ı |                       |
| ı |                       |
| ı |                       |

## 10.0 Stationary Equipment

Page 35 of 35

Village South Specific Plan (Proposed) - Los Angeles-South Coast County, Winter

# Fire Pumps and Emergency Generators

| Equipment Type Hours/Day Hours/Near Horse Power Load Factor Fuel Type |
|-----------------------------------------------------------------------|
| Boilers                                                               |
| Equipment Type Heat Input/Day Heat Input/Day Boiler Rating Fuel Type  |
| User Defined Equipment                                                |

### 11.0 Vegetation

Number

Equipment Type

Date: 1/12/2021 2:30 PM

(

### Attachment C

| Local Hire Provision Net Change                  |        |
|--------------------------------------------------|--------|
| Without Local Hire Provision                     |        |
| Total Construction GHG Emissions (MT CO2e)       | 3,623  |
| Amortized (MT CO2e/year)                         | 120.77 |
| With Local Hire Provision                        |        |
| Total Construction GHG Emissions (MT CO2e)       | 3,024  |
| Amortized (MT CO2e/year)                         | 100.80 |
| % Decrease in Construction-related GHG Emissions | 17%    |



### SOIL WATER AIR PROTECTION ENTERPRISE

2656 29th Street, Suite 201 Santa Monica, California 90405 Attn: Paul Rosenfeld, Ph.D. Mobil: (310) 795-2335 Office: (310) 452-5555 Fax: (310) 452-5550

Email: prosenfeld@swape.com

### Paul Rosenfeld, Ph.D.

Chemical Fate and Transport & Air Dispersion Modeling

Principal Environmental Chemist

Risk Assessment & Remediation Specialist

### **Education**

Ph.D. Soil Chemistry, University of Washington, 1999. Dissertation on volatile organic compound filtration.

M.S. Environmental Science, U.C. Berkeley, 1995. Thesis on organic waste economics.

B.A. Environmental Studies, U.C. Santa Barbara, 1991. Thesis on wastewater treatment.

### **Professional Experience**

Dr. Rosenfeld has over 25 years' experience conducting environmental investigations and risk assessments for evaluating impacts to human health, property, and ecological receptors. His expertise focuses on the fate and transport of environmental contaminants, human health risk, exposure assessment, and ecological restoration. Dr. Rosenfeld has evaluated and modeled emissions from unconventional oil drilling operations, oil spills, landfills, boilers and incinerators, process stacks, storage tanks, confined animal feeding operations, and many other industrial and agricultural sources. His project experience ranges from monitoring and modeling of pollution sources to evaluating impacts of pollution on workers at industrial facilities and residents in surrounding communities.

Dr. Rosenfeld has investigated and designed remediation programs and risk assessments for contaminated sites containing lead, heavy metals, mold, bacteria, particulate matter, petroleum hydrocarbons, chlorinated solvents, pesticides, radioactive waste, dioxins and furans, semi- and volatile organic compounds, PCBs, PAHs, perchlorate, asbestos, per- and poly-fluoroalkyl substances (PFOA/PFOS), unusual polymers, fuel oxygenates (MTBE), among other pollutants. Dr. Rosenfeld also has experience evaluating greenhouse gas emissions from various projects and is an expert on the assessment of odors from industrial and agricultural sites, as well as the evaluation of odor nuisance impacts and technologies for abatement of odorous emissions. As a principal scientist at SWAPE, Dr. Rosenfeld directs air dispersion modeling and exposure assessments. He has served as an expert witness and testified about pollution sources causing nuisance and/or personal injury at dozens of sites and has testified as an expert witness on more than ten cases involving exposure to air contaminants from industrial sources.

# **Professional History:**

Soil Water Air Protection Enterprise (SWAPE); 2003 to present; Principal and Founding Partner

UCLA School of Public Health; 2007 to 2011; Lecturer (Assistant Researcher)

UCLA School of Public Health; 2003 to 2006; Adjunct Professor

UCLA Environmental Science and Engineering Program; 2002-2004; Doctoral Intern Coordinator

UCLA Institute of the Environment, 2001-2002; Research Associate

Komex H<sub>2</sub>O Science, 2001 to 2003; Senior Remediation Scientist

National Groundwater Association, 2002-2004; Lecturer

San Diego State University, 1999-2001; Adjunct Professor

Anteon Corp., San Diego, 2000-2001; Remediation Project Manager

Ogden (now Amec), San Diego, 2000-2000; Remediation Project Manager

Bechtel, San Diego, California, 1999 - 2000; Risk Assessor

King County, Seattle, 1996 – 1999; Scientist

James River Corp., Washington, 1995-96; Scientist

Big Creek Lumber, Davenport, California, 1995; Scientist

Plumas Corp., California and USFS, Tahoe 1993-1995; Scientist

Peace Corps and World Wildlife Fund, St. Kitts, West Indies, 1991-1993; Scientist

## **Publications:**

Remy, L.L., Clay T., Byers, V., Rosenfeld P. E. (2019) Hospital, Health, and Community Burden After Oil Refinery Fires, Richmond, California 2007 and 2012. *Environmental Health*. 18:48

Simons, R.A., Seo, Y. Rosenfeld, P., (2015) Modeling the Effect of Refinery Emission On Residential Property Value. Journal of Real Estate Research. 27(3):321-342

Chen, J. A, Zapata A. R., Sutherland A. J., Molmen, D.R., Chow, B. S., Wu, L. E., Rosenfeld, P. E., Hesse, R. C., (2012) Sulfur Dioxide and Volatile Organic Compound Exposure To A Community In Texas City Texas Evaluated Using Aermod and Empirical Data. *American Journal of Environmental Science*, 8(6), 622-632.

Rosenfeld, P.E. & Feng, L. (2011). The Risks of Hazardous Waste. Amsterdam: Elsevier Publishing.

Cheremisinoff, N.P., & Rosenfeld, P.E. (2011). Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Agrochemical Industry, Amsterdam: Elsevier Publishing.

Gonzalez, J., Feng, L., Sutherland, A., Waller, C., Sok, H., Hesse, R., Rosenfeld, P. (2010). PCBs and Dioxins/Furans in Attic Dust Collected Near Former PCB Production and Secondary Copper Facilities in Sauget, IL. *Procedia Environmental Sciences*. 113–125.

Feng, L., Wu, C., Tam, L., Sutherland, A.J., Clark, J.J., Rosenfeld, P.E. (2010). Dioxin and Furan Blood Lipid and Attic Dust Concentrations in Populations Living Near Four Wood Treatment Facilities in the United States. *Journal of Environmental Health*. 73(6), 34-46.

Cheremisinoff, N.P., & Rosenfeld, P.E. (2010). Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Wood and Paper Industries. Amsterdam: Elsevier Publishing.

Cheremisinoff, N.P., & Rosenfeld, P.E. (2009). Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Petroleum Industry. Amsterdam: Elsevier Publishing.

Wu, C., Tam, L., Clark, J., Rosenfeld, P. (2009). Dioxin and furan blood lipid concentrations in populations living near four wood treatment facilities in the United States. WIT Transactions on Ecology and the Environment, Air Pollution, 123 (17), 319-327.

- Tam L. K.., Wu C. D., Clark J. J. and Rosenfeld, P.E. (2008). A Statistical Analysis Of Attic Dust And Blood Lipid Concentrations Of Tetrachloro-p-Dibenzodioxin (TCDD) Toxicity Equivalency Quotients (TEQ) In Two Populations Near Wood Treatment Facilities. *Organohalogen Compounds*, 70, 002252-002255.
- Tam L. K.., Wu C. D., Clark J. J. and Rosenfeld, P.E. (2008). Methods For Collect Samples For Assessing Dioxins And Other Environmental Contaminants In Attic Dust: A Review. *Organohalogen Compounds*, 70, 000527-000530.
- Hensley, A.R. A. Scott, J. J. J. Clark, **Rosenfeld, P.E.** (2007). Attic Dust and Human Blood Samples Collected near a Former Wood Treatment Facility. *Environmental Research*. 105, 194-197.
- Rosenfeld, P.E., J. J. J. Clark, A. R. Hensley, M. Suffet. (2007). The Use of an Odor Wheel Classification for Evaluation of Human Health Risk Criteria for Compost Facilities. *Water Science & Technology* 55(5), 345-357.
- Rosenfeld, P. E., M. Suffet. (2007). The Anatomy Of Odour Wheels For Odours Of Drinking Water, Wastewater, Compost And The Urban Environment. Water Science & Technology 55(5), 335-344.
- Sullivan, P. J. Clark, J.J., Agardy, F. J., Rosenfeld, P.E. (2007). Toxic Legacy, Synthetic Toxins in the Food, Water, and Air in American Cities. Boston Massachusetts: Elsevier Publishing
- Rosenfeld, P.E., and Suffet I.H. (2004). Control of Compost Odor Using High Carbon Wood Ash. Water Science and Technology. 49(9),171-178.
- Rosenfeld P. E., J.J. Clark, I.H. (Mel) Suffet (2004). The Value of An Odor-Quality-Wheel Classification Scheme For The Urban Environment. *Water Environment Federation's Technical Exhibition and Conference (WEFTEC)* 2004. New Orleans, October 2-6, 2004.
- Rosenfeld, P.E., and Suffet, I.H. (2004). Understanding Odorants Associated With Compost, Biomass Facilities, and the Land Application of Biosolids. *Water Science and Technology*. 49(9), 193-199.
- Rosenfeld, P.E., and Suffet I.H. (2004). Control of Compost Odor Using High Carbon Wood Ash, Water Science and Technology, 49(9), 171-178.
- Rosenfeld, P. E., Grey, M. A., Sellew, P. (2004). Measurement of Biosolids Odor and Odorant Emissions from Windrows, Static Pile and Biofilter. *Water Environment Research*. 76(4), 310-315.
- Rosenfeld, P.E., Grey, M and Suffet, M. (2002). Compost Demonstration Project, Sacramento California Using High-Carbon Wood Ash to Control Odor at a Green Materials Composting Facility. *Integrated Waste Management Board Public Affairs Office*, Publications Clearinghouse (MS–6), Sacramento, CA Publication #442-02-008.
- Rosenfeld, P.E., and C.L. Henry. (2001). Characterization of odor emissions from three different biosolids. *Water Soil and Air Pollution*. 127(1-4), 173-191.
- Rosenfeld, P.E., and Henry C. L., (2000). Wood ash control of odor emissions from biosolids application. *Journal of Environmental Quality*. 29, 1662-1668.
- Rosenfeld, P.E., C.L. Henry and D. Bennett. (2001). Wastewater dewatering polymer affect on biosolids odor emissions and microbial activity. *Water Environment Research*. 73(4), 363-367.
- Rosenfeld, P.E., and C.L. Henry. (2001). Activated Carbon and Wood Ash Sorption of Wastewater, Compost, and Biosolids Odorants. *Water Environment Research*, 73, 388-393.
- Rosenfeld, P.E., and Henry C. L., (2001). High carbon wood ash effect on biosolids microbial activity and odor. Water Environment Research. 131(1-4), 247-262.

- Chollack, T. and P. Rosenfeld. (1998). Compost Amendment Handbook For Landscaping. Prepared for and distributed by the City of Redmond, Washington State.
- Rosenfeld, P. E. (1992). The Mount Liamuiga Crater Trail. Heritage Magazine of St. Kitts, 3(2).
- Rosenfeld, P. E. (1993). High School Biogas Project to Prevent Deforestation On St. Kitts. *Biomass Users Network*, 7(1).
- Rosenfeld, P. E. (1998). Characterization, Quantification, and Control of Odor Emissions From Biosolids Application To Forest Soil. Doctoral Thesis. University of Washington College of Forest Resources.
- Rosenfeld, P. E. (1994). Potential Utilization of Small Diameter Trees on Sierra County Public Land. Masters thesis reprinted by the Sierra County Economic Council. Sierra County, California.
- Rosenfeld, P. E. (1991). How to Build a Small Rural Anaerobic Digester & Uses Of Biogas In The First And Third World. Bachelors Thesis. University of California.

# **Presentations:**

- Rosenfeld, P.E., Sutherland, A; Hesse, R.; Zapata, A. (October 3-6, 2013). Air dispersion modeling of volatile organic emissions from multiple natural gas wells in Decatur, TX. 44th Western Regional Meeting, American Chemical Society. Lecture conducted from Santa Clara, CA.
- Sok, H.L.; Waller, C.C.; Feng, L.; Gonzalez, J.; Sutherland, A.J.; Wisdom-Stack, T.; Sahai, R.K.; Hesse, R.C.; **Rosenfeld, P.E.** (June 20-23, 2010). Atrazine: A Persistent Pesticide in Urban Drinking Water. *Urban Environmental Pollution*. Lecture conducted from Boston, MA.
- Feng, L.; Gonzalez, J.; Sok, H.L.; Sutherland, A.J.; Waller, C.C.; Wisdom-Stack, T.; Sahai, R.K.; La, M.; Hesse, R.C.; **Rosenfeld, P.E.** (June 20-23, 2010). Bringing Environmental Justice to East St. Louis, Illinois. *Urban Environmental Pollution*. Lecture conducted from Boston, MA.
- Rosenfeld, P.E. (April 19-23, 2009). Perfluoroctanoic Acid (PFOA) and Perfluoroactane Sulfonate (PFOS) Contamination in Drinking Water From the Use of Aqueous Film Forming Foams (AFFF) at Airports in the United States. 2009 Ground Water Summit and 2009 Ground Water Protection Council Spring Meeting, Lecture conducted from Tuscon, AZ.
- Rosenfeld, P.E. (April 19-23, 2009). Cost to Filter Atrazine Contamination from Drinking Water in the United States" Contamination in Drinking Water From the Use of Aqueous Film Forming Foams (AFFF) at Airports in the United States. 2009 Ground Water Summit and 2009 Ground Water Protection Council Spring Meeting. Lecture conducted from Tuscon, AZ.
- Wu, C., Tam, L., Clark, J., Rosenfeld, P. (20-22 July, 2009). Dioxin and furan blood lipid concentrations in populations living near four wood treatment facilities in the United States. Brebbia, C.A. and Popov, V., eds., Air Pollution XVII: Proceedings of the Seventeenth International Conference on Modeling, Monitoring and Management of Air Pollution. Lecture conducted from Tallinn, Estonia.
- **Rosenfeld, P. E.** (October 15-18, 2007). Moss Point Community Exposure To Contaminants From A Releasing Facility. *The 23<sup>rd</sup> Annual International Conferences on Soils Sediment and Water*. Platform lecture conducted from University of Massachusetts, Amherst MA.
- Rosenfeld, P. E. (October 15-18, 2007). The Repeated Trespass of Tritium-Contaminated Water Into A Surrounding Community Form Repeated Waste Spills From A Nuclear Power Plant. *The 23<sup>rd</sup> Annual International Conferences on Soils Sediment and Water*. Platform lecture conducted from University of Massachusetts, Amherst MA.

**Rosenfeld, P. E.** (October 15-18, 2007). Somerville Community Exposure To Contaminants From Wood Treatment Facility Emissions. The 23<sup>rd</sup> Annual International Conferences on Soils Sediment and Water. Lecture conducted from University of Massachusetts, Amherst MA.

Rosenfeld P. E. (March 2007). Production, Chemical Properties, Toxicology, & Treatment Case Studies of 1,2,3-Trichloropropane (TCP). *The Association for Environmental Health and Sciences (AEHS) Annual Meeting*. Lecture conducted from San Diego, CA.

Rosenfeld P. E. (March 2007). Blood and Attic Sampling for Dioxin/Furan, PAH, and Metal Exposure in Florala, Alabama. *The AEHS Annual Meeting*. Lecture conducted from San Diego, CA.

Hensley A.R., Scott, A., Rosenfeld P.E., Clark, J.J.J. (August 21 – 25, 2006). Dioxin Containing Attic Dust And Human Blood Samples Collected Near A Former Wood Treatment Facility. *The 26th International Symposium on Halogenated Persistent Organic Pollutants – DIOXIN2006*. Lecture conducted from Radisson SAS Scandinavia Hotel in Oslo Norway.

Hensley A.R., Scott, A., Rosenfeld P.E., Clark, J.J.J. (November 4-8, 2006). Dioxin Containing Attic Dust And Human Blood Samples Collected Near A Former Wood Treatment Facility. APHA 134 Annual Meeting & Exposition. Lecture conducted from Boston Massachusetts.

**Paul Rosenfeld Ph.D.** (October 24-25, 2005). Fate, Transport and Persistence of PFOA and Related Chemicals. Mealey's C8/PFOA. *Science, Risk & Litigation Conference*. Lecture conducted from The Rittenhouse Hotel, Philadelphia, PA.

Paul Rosenfeld Ph.D. (September 19, 2005). Brominated Flame Retardants in Groundwater: Pathways to Human Ingestion, *Toxicology and Remediation PEMA Emerging Contaminant Conference*. Lecture conducted from Hilton Hotel, Irvine California.

Paul Rosenfeld Ph.D. (September 19, 2005). Fate, Transport, Toxicity, And Persistence of 1,2,3-TCP. PEMA Emerging Contaminant Conference. Lecture conducted from Hilton Hotel in Irvine, California.

**Paul Rosenfeld Ph.D.** (September 26-27, 2005). Fate, Transport and Persistence of PDBEs. *Mealey's Groundwater Conference*. Lecture conducted from Ritz Carlton Hotel, Marina Del Ray, California.

**Paul Rosenfeld Ph.D.** (June 7-8, 2005). Fate, Transport and Persistence of PFOA and Related Chemicals. *International Society of Environmental Forensics: Focus On Emerging Contaminants*. Lecture conducted from Sheraton Oceanfront Hotel, Virginia Beach, Virginia.

**Paul Rosenfeld Ph.D.** (July 21-22, 2005). Fate Transport, Persistence and Toxicology of PFOA and Related Perfluorochemicals. 2005 National Groundwater Association Ground Water And Environmental Law Conference. Lecture conducted from Wyndham Baltimore Inner Harbor, Baltimore Maryland.

**Paul Rosenfeld Ph.D.** (July 21-22, 2005). Brominated Flame Retardants in Groundwater: Pathways to Human Ingestion, Toxicology and Remediation. 2005 National Groundwater Association Ground Water and Environmental Law Conference. Lecture conducted from Wyndham Baltimore Inner Harbor, Baltimore Maryland.

**Paul Rosenfeld, Ph.D.** and James Clark Ph.D. and Rob Hesse R.G. (May 5-6, 2004). Tert-butyl Alcohol Liability and Toxicology, A National Problem and Unquantified Liability. *National Groundwater Association. Environmental Law Conference*. Lecture conducted from Congress Plaza Hotel, Chicago Illinois.

Paul Rosenfeld, Ph.D. (March 2004). Perchlorate Toxicology. *Meeting of the American Groundwater Trust*. Lecture conducted from Phoenix Arizona.

Hagemann, M.F., **Paul Rosenfeld, Ph.D.** and Rob Hesse (2004). Perchlorate Contamination of the Colorado River. *Meeting of tribal representatives*. Lecture conducted from Parker, AZ.

- **Paul Rosenfeld, Ph.D.** (April 7, 2004). A National Damage Assessment Model For PCE and Dry Cleaners. Drycleaner Symposium. California Ground Water Association. Lecture conducted from Radison Hotel, Sacramento, California.
- Rosenfeld, P. E., Grey, M., (June 2003) Two stage biofilter for biosolids composting odor control. Seventh International In Situ And On Site Bioremediation Symposium Battelle Conference Orlando, FL.
- **Paul Rosenfeld, Ph.D.** and James Clark Ph.D. (February 20-21, 2003) Understanding Historical Use, Chemical Properties, Toxicity and Regulatory Guidance of 1,4 Dioxane. *National Groundwater Association. Southwest Focus Conference. Water Supply and Emerging Contaminants.*. Lecture conducted from Hyatt Regency Phoenix Arizona.
- **Paul Rosenfeld, Ph.D.** (February 6-7, 2003). Underground Storage Tank Litigation and Remediation. *California CUPA Forum*. Lecture conducted from Marriott Hotel, Anaheim California.
- **Paul Rosenfeld, Ph.D.** (October 23, 2002) Underground Storage Tank Litigation and Remediation. *EPA Underground Storage Tank Roundtable*. Lecture conducted from Sacramento California.
- Rosenfeld, P.E. and Suffet, M. (October 7- 10, 2002). Understanding Odor from Compost, Wastewater and Industrial Processes. Sixth Annual Symposium On Off Flavors in the Aquatic Environment. International Water Association. Lecture conducted from Barcelona Spain.
- Rosenfeld, P.E. and Suffet, M. (October 7-10, 2002). Using High Carbon Wood Ash to Control Compost Odor. Sixth Annual Symposium On Off Flavors in the Aquatic Environment. International Water Association. Lecture conducted from Barcelona Spain.
- **Rosenfeld, P.E.** and Grey, M. A. (September 22-24, 2002). Biocycle Composting For Coastal Sage Restoration. *Northwest Biosolids Management Association*. Lecture conducted from Vancouver Washington..
- **Rosenfeld**, **P.E**. and Grey, M. A. (November 11-14, 2002). Using High-Carbon Wood Ash to Control Odor at a Green Materials Composting Facility. *Soil Science Society Annual Conference*. Lecture conducted from Indianapolis, Maryland.
- Rosenfeld. P.E. (September 16, 2000). Two stage biofilter for biosolids composting odor control. Water Environment Federation. Lecture conducted from Anaheim California.
- Rosenfeld. P.E. (October 16, 2000). Wood ash and biofilter control of compost odor. *Biofest*. Lecture conducted from Ocean Shores, California.
- Rosenfeld, P.E. (2000). Bioremediation Using Organic Soil Amendments. California Resource Recovery Association. Lecture conducted from Sacramento California.
- Rosenfeld, P.E., C.L. Henry, R. Harrison. (1998). Oat and Grass Seed Germination and Nitrogen and Sulfur Emissions Following Biosolids Incorporation With High-Carbon Wood-Ash. Water Environment Federation 12th Annual Residuals and Biosolids Management Conference Proceedings. Lecture conducted from Bellevue Washington.
- **Rosenfeld, P.E.**, and C.L. Henry. (1999). An evaluation of ash incorporation with biosolids for odor reduction. *Soil Science Society of America*. Lecture conducted from Salt Lake City Utah.
- **Rosenfeld, P.E.**, C.L. Henry, R. Harrison. (1998). Comparison of Microbial Activity and Odor Emissions from Three Different Biosolids Applied to Forest Soil. *Brown and Caldwell*. Lecture conducted from Seattle Washington.
- Rosenfeld, P.E., C.L. Henry. (1998). Characterization, Quantification, and Control of Odor Emissions from Biosolids Application To Forest Soil. *Biofest*. Lecture conducted from Lake Chelan, Washington.

Rosenfeld, P.E, C.L. Henry, R. Harrison. (1998). Oat and Grass Seed Germination and Nitrogen and Sulfur Emissions Following Biosolids Incorporation With High-Carbon Wood-Ash. Water Environment Federation 12th Annual Residuals and Biosolids Management Conference Proceedings. Lecture conducted from Bellevue Washington.

Rosenfeld, P.E., C.L. Henry, R. B. Harrison, and R. Dills. (1997). Comparison of Odor Emissions From Three Different Biosolids Applied to Forest Soil. *Soil Science Society of America*. Lecture conducted from Anaheim California.

# **Teaching Experience:**

UCLA Department of Environmental Health (Summer 2003 through 20010) Taught Environmental Health Science 100 to students, including undergrad, medical doctors, public health professionals and nurses. Course focused on the health effects of environmental contaminants.

National Ground Water Association, Successful Remediation Technologies. Custom Course in Sante Fe, New Mexico. May 21, 2002. Focused on fate and transport of fuel contaminants associated with underground storage tanks.

National Ground Water Association; Successful Remediation Technologies Course in Chicago Illinois. April 1, 2002. Focused on fate and transport of contaminants associated with Superfund and RCRA sites.

California Integrated Waste Management Board, April and May, 2001. Alternative Landfill Caps Seminar in San Diego, Ventura, and San Francisco. Focused on both prescriptive and innovative landfill cover design.

UCLA Department of Environmental Engineering, February 5, 2002. Seminar on Successful Remediation Technologies focusing on Groundwater Remediation.

University Of Washington, Soil Science Program, Teaching Assistant for several courses including: Soil Chemistry, Organic Soil Amendments, and Soil Stability.

U.C. Berkeley, Environmental Science Program Teaching Assistant for Environmental Science 10.

# **Academic Grants Awarded:**

California Integrated Waste Management Board. \$41,000 grant awarded to UCLA Institute of the Environment. Goal: To investigate effect of high carbon wood ash on volatile organic emissions from compost. 2001.

Synagro Technologies, Corona California: \$10,000 grant awarded to San Diego State University. Goal: investigate effect of biosolids for restoration and remediation of degraded coastal sage soils. 2000.

King County, Department of Research and Technology, Washington State. \$100,000 grant awarded to University of Washington: Goal: To investigate odor emissions from biosolids application and the effect of polymers and ash on VOC emissions. 1998.

Northwest Biosolids Management Association, Washington State. \$20,000 grant awarded to investigate effect of polymers and ash on VOC emissions from biosolids. 1997.

James River Corporation, Oregon: \$10,000 grant was awarded to investigate the success of genetically engineered Poplar trees with resistance to round-up. 1996.

United State Forest Service, Tahoe National Forest: \$15,000 grant was awarded to investigating fire ecology of the Tahoe National Forest. 1995.

Kellogg Foundation, Washington D.C. \$500 grant was awarded to construct a large anaerobic digester on St. Kitts in West Indies. 1993

June 2019

# **Deposition and/or Trial Testimony:**

In the United States District Court For The District of New Jersey

Duarte et al, Plaintiffs, vs. United States Metals Refining Company et. al. Defendant.

Case No.: 2:17-cv-01624-ES-SCM Rosenfeld Deposition. 6-7-2019

In the United States District Court of Southern District of Texas Galveston Division

M/T Carla Maersk, *Plaintiffs*, vs. Conti 168., Schiffahrts-GMBH & Co. Bulker KG MS "Conti Perdido" *Defendant*.

Case No.: 3:15-CV-00106 consolidated with 3:15-CV-00237

Rosenfeld Deposition. 5-9-2019

In The Superior Court of the State of California In And For The County Of Los Angeles - Santa Monica

Carole-Taddeo-Bates et al., vs. Ifran Khan et al., Defendants

Case No.: No. BC615636

Rosenfeld Deposition, 1-26-2019

In The Superior Court of the State of California In And For The County Of Los Angeles - Santa Monica

The San Gabriel Valley Council of Governments et al. vs El Adobe Apts. Inc. et al., Defendants

Case No.: No. BC646857

Rosenfeld Deposition, 10-6-2018; Trial 3-7-19

In United States District Court For The District of Colorado

Bells et al. Plaintiff vs. The 3M Company et al., Defendants

Case: No 1:16-cv-02531-RBJ

Rosenfeld Deposition, 3-15-2018 and 4-3-2018

In The District Court Of Regan County, Texas, 112th Judicial District

Phillip Bales et al., Plaintiff vs. Dow Agrosciences, LLC, et al., Defendants

Cause No 1923

Rosenfeld Deposition, 11-17-2017

In The Superior Court of the State of California In And For The County Of Contra Costa

Simons et al., Plaintiffs vs. Chevron Corporation, et al., Defendants

Cause No C12-01481

Rosenfeld Deposition, 11-20-2017

In The Circuit Court Of The Twentieth Judicial Circuit, St Clair County, Illinois

Martha Custer et al., Plaintiff vs. Cerro Flow Products, Inc., Defendants

Case No.: No. 0i9-L-2295

Rosenfeld Deposition, 8-23-2017

In The Superior Court of the State of California, For The County of Los Angeles

Warrn Gilbert and Penny Gilber, Plaintiff vs. BMW of North America LLC

Case No.: LC102019 (c/w BC582154)

Rosenfeld Deposition, 8-16-2017, Trail 8-28-2018

In the Northern District Court of Mississippi, Greenville Division

Brenda J. Cooper, et al., Plaintiffs, vs. Meritor Inc., et al., Defendants

Case Number: 4:16-cv-52-DMB-JVM

Rosenfeld Deposition: July 2017

## In The Superior Court of the State of Washington, County of Snohomish

Michael Davis and Julie Davis et al., Plaintiff vs. Cedar Grove Composting Inc., Defendants

Case No.: No. 13-2-03987-5

Rosenfeld Deposition, February 2017

Trial, March 2017

#### In The Superior Court of the State of California, County of Alameda

Charles Spain., Plaintiff vs. Thermo Fisher Scientific, et al., Defendants

Case No.: RG14711115

Rosenfeld Deposition, September 2015

### In The Iowa District Court In And For Poweshiek County

Russell D. Winburn, et al., Plaintiffs vs. Doug Hoksbergen, et al., Defendants

Case No.: LALA002187

Rosenfeld Deposition, August 2015

### In The Iowa District Court For Wapello County

Jerry Dovico, et al., Plaintiffs vs. Valley View Sine LLC, et al., Defendants

Law No,: LALA105144 - Division A Rosenfeld Deposition, August 2015

### In The Iowa District Court For Wapello County

Doug Pauls, et al., et al., Plaintiffs vs. Richard Warren, et al., Defendants

Law No,: LALA105144 - Division A Rosenfeld Deposition, August 2015

### In The Circuit Court of Ohio County, West Virginia

Robert Andrews, et al. v. Antero, et al.

Civil Action No. 14-C-30000

Rosenfeld Deposition, June 2015

## In The Third Judicial District County of Dona Ana, New Mexico

Betty Gonzalez, et al. Plaintiffs vs. Del Oro Dairy, Del Oro Real Estate LLC, Jerry Settles and Deward

DeRuyter, Defendants

Rosenfeld Deposition: July 2015

### In The Iowa District Court For Muscatine County

Laurie Freeman et. al. Plaintiffs vs. Grain Processing Corporation, Defendant

Case No 4980

Rosenfeld Deposition: May 2015

# In the Circuit Court of the 17th Judicial Circuit, in and For Broward County, Florida

Walter Hinton, et. al. Plaintiff, vs. City of Fort Lauderdale, Florida, a Municipality, Defendant.

Case Number CACE07030358 (26)
Rosenfeld Deposition: December 2014

### In the United States District Court Western District of Oklahoma

Tommy McCarty, et al., Plaintiffs, v. Oklahoma City Landfill, LLC d/b/a Southeast Oklahoma City

Landfill, et al. Defendants. Case No. 5:12-cv-01152-C

Rosenfeld Deposition: July 2014

In the County Court of Dallas County Texas

Lisa Parr et al, Plaintiff, vs. Aruba et al, Defendant.

Case Number cc-11-01650-E

Rosenfeld Deposition: March and September 2013

Rosenfeld Trial: April 2014

In the Court of Common Pleas of Tuscarawas County Ohio

John Michael Abicht, et al., Plaintiffs, vs. Republic Services, Inc., et al., Defendants

Case Number: 2008 CT 10 0741 (Cons. w/ 2009 CV 10 0987)

Rosenfeld Deposition: October 2012

In the United States District Court of Southern District of Texas Galveston Division

Kyle Cannon, Eugene Donovan, Genaro Ramirez, Carol Sassler, and Harvey Walton, each Individually and on behalf of those similarly situated, *Plaintiffs*, vs. BP Products North America, Inc., *Defendant*.

Case 3:10-cv-00622

Rosenfeld Deposition: February 2012

Rosenfeld Trial: April 2013

In the Circuit Court of Baltimore County Maryland

Philip E. Cvach, II et al., Plaintiffs vs. Two Farms, Inc. d/b/a Royal Farms, Defendants

Case Number: 03-C-12-012487 OT Rosenfeld Deposition: September 2013



1640 5<sup>th</sup> St.., Suite 204 Santa Santa Monica, California 90401 Tel: (949) 887-9013

Email: mhagemann@swape.com

Matthew F. Hagemann, P.G., C.Hg., QSD, QSP

Geologic and Hydrogeologic Characterization Industrial Stormwater Compliance Investigation and Remediation Strategies Litigation Support and Testifying Expert CEQA Review

### **Education:**

M.S. Degree, Geology, California State University Los Angeles, Los Angeles, CA, 1984. B.A. Degree, Geology, Humboldt State University, Arcata, CA, 1982.

### **Professional Certifications:**

California Professional Geologist
California Certified Hydrogeologist
Qualified SWPPP Developer and Practitioner

### **Professional Experience:**

Matt has 25 years of experience in environmental policy, assessment and remediation. He spent nine years with the U.S. EPA in the RCRA and Superfund programs and served as EPA's Senior Science Policy Advisor in the Western Regional Office where he identified emerging threats to groundwater from perchlorate and MTBE. While with EPA, Matt also served as a Senior Hydrogeologist in the oversight of the assessment of seven major military facilities undergoing base closure. He led numerous enforcement actions under provisions of the Resource Conservation and Recovery Act (RCRA) while also working with permit holders to improve hydrogeologic characterization and water quality monitoring.

Matt has worked closely with U.S. EPA legal counsel and the technical staff of several states in the application and enforcement of RCRA, Safe Drinking Water Act and Clean Water Act regulations. Matt has trained the technical staff in the States of California, Hawaii, Nevada, Arizona and the Territory of Guam in the conduct of investigations, groundwater fundamentals, and sampling techniques.

## Positions Matt has held include:

- Founding Partner, Soil/Water/Air Protection Enterprise (SWAPE) (2003 present);
- Geology Instructor, Golden West College, 2010 2014;
- Senior Environmental Analyst, Komex H2O Science, Inc. (2000 -- 2003);

- Executive Director, Orange Coast Watch (2001 2004);
- Senior Science Policy Advisor and Hydrogeologist, U.S. Environmental Protection Agency (1989– 1998);
- Hydrogeologist, National Park Service, Water Resources Division (1998 2000);
- Adjunct Faculty Member, San Francisco State University, Department of Geosciences (1993 1998);
- Instructor, College of Marin, Department of Science (1990 1995);
- Geologist, U.S. Forest Service (1986 1998); and
- Geologist, Dames & Moore (1984 1986).

# Senior Regulatory and Litigation Support Analyst:

With SWAPE, Matt's responsibilities have included:

- Lead analyst and testifying expert in the review of over 100 environmental impact reports since 2003 under CEQA that identify significant issues with regard to hazardous waste, water resources, water quality, air quality, Valley Fever, greenhouse gas emissions, and geologic hazards. Make recommendations for additional mitigation measures to lead agencies at the local and county level to include additional characterization of health risks and implementation of protective measures to reduce worker exposure to hazards from toxins and Valley Fever.
- Stormwater analysis, sampling and best management practice evaluation at industrial facilities.
- Manager of a project to provide technical assistance to a community adjacent to a former Naval shipyard under a grant from the U.S. EPA.
- Technical assistance and litigation support for vapor intrusion concerns.
- Lead analyst and testifying expert in the review of environmental issues in license applications for large solar power plants before the California Energy Commission.
- Manager of a project to evaluate numerous formerly used military sites in the western U.S.
- Manager of a comprehensive evaluation of potential sources of perchlorate contamination in Southern California drinking water wells.
- Manager and designated expert for litigation support under provisions of Proposition 65 in the review of releases of gasoline to sources drinking water at major refineries and hundreds of gas stations throughout California.
- Expert witness on two cases involving MTBE litigation.
- Expert witness and litigation support on the impact of air toxins and hazards at a school.
- Expert witness in litigation at a former plywood plant.

### With Komex H2O Science Inc., Matt's duties included the following:

- Senior author of a report on the extent of perchlorate contamination that was used in testimony by the former U.S. EPA Administrator and General Counsel.
- Senior researcher in the development of a comprehensive, electronically interactive chronology of MTBE use, research, and regulation.
- Senior researcher in the development of a comprehensive, electronically interactive chronology of perchlorate use, research, and regulation.
- Senior researcher in a study that estimates nationwide costs for MTBE remediation and drinking
  water treatment, results of which were published in newspapers nationwide and in testimony
  against provisions of an energy bill that would limit liability for oil companies.
- Research to support litigation to restore drinking water supplies that have been contaminated by MTBE in California and New York.

- Expert witness testimony in a case of oil production-related contamination in Mississippi.
- Lead author for a multi-volume remedial investigation report for an operating school in Los Angeles that met strict regulatory requirements and rigorous deadlines.

 Development of strategic approaches for cleanup of contaminated sites in consultation with clients and regulators.

#### **Executive Director:**

As Executive Director with Orange Coast Watch, Matt led efforts to restore water quality at Orange County beaches from multiple sources of contamination including urban runoff and the discharge of wastewater. In reporting to a Board of Directors that included representatives from leading Orange County universities and businesses, Matt prepared issue papers in the areas of treatment and disinfection of wastewater and control of the discharge of grease to sewer systems. Matt actively participated in the development of countywide water quality permits for the control of urban runoff and permits for the discharge of wastewater. Matt worked with other nonprofits to protect and restore water quality, including Surfrider, Natural Resources Defense Council and Orange County CoastKeeper as well as with business institutions including the Orange County Business Council.

### **Hydrogeology:**

As a Senior Hydrogeologist with the U.S. Environmental Protection Agency, Matt led investigations to characterize and cleanup closing military bases, including Mare Island Naval Shipyard, Hunters Point Naval Shipyard, Treasure Island Naval Station, Alameda Naval Station, Moffett Field, Mather Army Airfield, and Sacramento Army Depot. Specific activities were as follows:

- Led efforts to model groundwater flow and contaminant transport, ensured adequacy of monitoring networks, and assessed cleanup alternatives for contaminated sediment, soil, and groundwater.
- Initiated a regional program for evaluation of groundwater sampling practices and laboratory analysis at military bases.
- Identified emerging issues, wrote technical guidance, and assisted in policy and regulation development through work on four national U.S. EPA workgroups, including the Superfund Groundwater Technical Forum and the Federal Facilities Forum.

At the request of the State of Hawaii, Matt developed a methodology to determine the vulnerability of groundwater to contamination on the islands of Maui and Oahu. He used analytical models and a GIS to show zones of vulnerability, and the results were adopted and published by the State of Hawaii and County of Maui.

As a hydrogeologist with the EPA Groundwater Protection Section, Matt worked with provisions of the Safe Drinking Water Act and NEPA to prevent drinking water contamination. Specific activities included the following:

- Received an EPA Bronze Medal for his contribution to the development of national guidance for the protection of drinking water.
- Managed the Sole Source Aquifer Program and protected the drinking water of two communities
  through designation under the Safe Drinking Water Act. He prepared geologic reports,
  conducted public hearings, and responded to public comments from residents who were very
  concerned about the impact of designation.

 Reviewed a number of Environmental Impact Statements for planned major developments, including large hazardous and solid waste disposal facilities, mine reclamation, and water transfer.

Matt served as a hydrogeologist with the RCRA Hazardous Waste program. Duties were as follows:

- Supervised the hydrogeologic investigation of hazardous waste sites to determine compliance with Subtitle C requirements.
- Reviewed and wrote "part B" permits for the disposal of hazardous waste.
- Conducted RCRA Corrective Action investigations of waste sites and led inspections that formed
  the basis for significant enforcement actions that were developed in close coordination with U.S.
  EPA legal counsel.
- Wrote contract specifications and supervised contractor's investigations of waste sites.

With the National Park Service, Matt directed service-wide investigations of contaminant sources to prevent degradation of water quality, including the following tasks:

- Applied pertinent laws and regulations including CERCLA, RCRA, NEPA, NRDA, and the Clean Water Act to control military, mining, and landfill contaminants.
- Conducted watershed-scale investigations of contaminants at parks, including Yellowstone and Olympic National Park.
- Identified high-levels of perchlorate in soil adjacent to a national park in New Mexico and advised park superintendent on appropriate response actions under CERCLA.
- Served as a Park Service representative on the Interagency Perchlorate Steering Committee, a national workgroup.
- Developed a program to conduct environmental compliance audits of all National Parks while serving on a national workgroup.
- Co-authored two papers on the potential for water contamination from the operation of personal
  watercraft and snowmobiles, these papers serving as the basis for the development of nationwide policy on the use of these vehicles in National Parks.
- Contributed to the Federal Multi-Agency Source Water Agreement under the Clean Water Action Plan.

### Policy:

Served senior management as the Senior Science Policy Advisor with the U.S. Environmental Protection Agency, Region 9. Activities included the following:

- Advised the Regional Administrator and senior management on emerging issues such as the
  potential for the gasoline additive MTBE and ammonium perchlorate to contaminate drinking
  water supplies.
- Shaped EPA's national response to these threats by serving on workgroups and by contributing
  to guidance, including the Office of Research and Development publication, Oxygenates in
  Water: Critical Information and Research Needs.
- Improved the technical training of EPA's scientific and engineering staff.
- Earned an EPA Bronze Medal for representing the region's 300 scientists and engineers in negotiations with the Administrator and senior management to better integrate scientific principles into the policy-making process.
- Established national protocol for the peer review of scientific documents.

### **Geology:**

With the U.S. Forest Service, Matt led investigations to determine hillslope stability of areas proposed for timber harvest in the central Oregon Coast Range. Specific activities were as follows:

- Mapped geology in the field, and used aerial photographic interpretation and mathematical models to determine slope stability.
- Coordinated his research with community members who were concerned with natural resource protection.
- Characterized the geology of an aquifer that serves as the sole source of drinking water for the city of Medford, Oregon.

As a consultant with Dames and Moore, Matt led geologic investigations of two contaminated sites (later listed on the Superfund NPL) in the Portland, Oregon, area and a large hazardous waste site in eastern Oregon. Duties included the following:

- Supervised year-long effort for soil and groundwater sampling.
- Conducted aquifer tests.
- Investigated active faults beneath sites proposed for hazardous waste disposal.

### Teaching:

From 1990 to 1998, Matt taught at least one course per semester at the community college and university levels:

- At San Francisco State University, held an adjunct faculty position and taught courses in environmental geology, oceanography (lab and lecture), hydrogeology, and groundwater contamination.
- Served as a committee member for graduate and undergraduate students.
- Taught courses in environmental geology and oceanography at the College of Marin.

Matt taught physical geology (lecture and lab and introductory geology at Golden West College in Huntington Beach, California from 2010 to 2014.

### **Invited Testimony, Reports, Papers and Presentations:**

**Hagemann, M.F.**, 2008. Disclosure of Hazardous Waste Issues under CEQA. Presentation to the Public Environmental Law Conference, Eugene, Oregon.

**Hagemann, M.F.**, 2008. Disclosure of Hazardous Waste Issues under CEQA. Invited presentation to U.S. EPA Region 9, San Francisco, California.

**Hagemann, M.F.,** 2005. Use of Electronic Databases in Environmental Regulation, Policy Making and Public Participation. Brownfields 2005, Denver, Coloradao.

**Hagemann, M.F.,** 2004. Perchlorate Contamination of the Colorado River and Impacts to Drinking Water in Nevada and the Southwestern U.S. Presentation to a meeting of the American Groundwater Trust, Las Vegas, NV (served on conference organizing committee).

**Hagemann, M.F.**, 2004. Invited testimony to a California Senate committee hearing on air toxins at schools in Southern California, Los Angeles.

Brown, A., Farrow, J., Gray, A. and **Hagemann, M.**, 2004. An Estimate of Costs to Address MTBE Releases from Underground Storage Tanks and the Resulting Impact to Drinking Water Wells. Presentation to the Ground Water and Environmental Law Conference, National Groundwater Association.

**Hagemann, M.F.,** 2004. Perchlorate Contamination of the Colorado River and Impacts to Drinking Water in Arizona and the Southwestern U.S. Presentation to a meeting of the American Groundwater Trust, Phoenix, AZ (served on conference organizing committee).

**Hagemann, M.F.,** 2003. Perchlorate Contamination of the Colorado River and Impacts to Drinking Water in the Southwestern U.S. Invited presentation to a special committee meeting of the National Academy of Sciences, Irvine, CA.

**Hagemann, M.F.**, 2003. Perchlorate Contamination of the Colorado River. Invited presentation to a tribal EPA meeting, Pechanga, CA.

**Hagemann, M.F.**, 2003. Perchlorate Contamination of the Colorado River. Invited presentation to a meeting of tribal repesentatives, Parker, AZ.

**Hagemann, M.F.**, 2003. Impact of Perchlorate on the Colorado River and Associated Drinking Water Supplies. Invited presentation to the Inter-Tribal Meeting, Torres Martinez Tribe.

**Hagemann, M.F.**, 2003. The Emergence of Perchlorate as a Widespread Drinking Water Contaminant. Invited presentation to the U.S. EPA Region 9.

**Hagemann, M.F.**, 2003. A Deductive Approach to the Assessment of Perchlorate Contamination. Invited presentation to the California Assembly Natural Resources Committee.

**Hagemann, M.F.**, 2003. Perchlorate: A Cold War Legacy in Drinking Water. Presentation to a meeting of the National Groundwater Association.

**Hagemann, M.F.**, 2002. From Tank to Tap: A Chronology of MTBE in Groundwater. Presentation to a meeting of the National Groundwater Association.

**Hagemann, M.F.**, 2002. A Chronology of MTBE in Groundwater and an Estimate of Costs to Address Impacts to Groundwater. Presentation to the annual meeting of the Society of Environmental Journalists.

**Hagemann, M.F.**, 2002. An Estimate of the Cost to Address MTBE Contamination in Groundwater (and Who Will Pay). Presentation to a meeting of the National Groundwater Association.

**Hagemann, M.F.**, 2002. An Estimate of Costs to Address MTBE Releases from Underground Storage Tanks and the Resulting Impact to Drinking Water Wells. Presentation to a meeting of the U.S. EPA and State Underground Storage Tank Program managers.

**Hagemann, M.F.**, 2001. From Tank to Tap: A Chronology of MTBE in Groundwater. Unpublished report.

**Hagemann, M.F.**, 2001. Estimated Cleanup Cost for MTBE in Groundwater Used as Drinking Water. Unpublished report.

**Hagemann, M.F.**, 2001. Estimated Costs to Address MTBE Releases from Leaking Underground Storage Tanks. Unpublished report.

**Hagemann, M.F.**, and VanMouwerik, M., 1999. Potential Water Quality Concerns Related to Snowmobile Usage. Water Resources Division, National Park Service, Technical Report.

VanMouwerik, M. and **Hagemann, M.F**. 1999, Water Quality Concerns Related to Personal Watercraft Usage. Water Resources Division, National Park Service, Technical Report.

**Hagemann, M.F.**, 1999, Is Dilution the Solution to Pollution in National Parks? The George Wright Society Biannual Meeting, Asheville, North Carolina.

**Hagemann, M.F.**, 1997, The Potential for MTBE to Contaminate Groundwater. U.S. EPA Superfund Groundwater Technical Forum Annual Meeting, Las Vegas, Nevada.

**Hagemann, M.F.**, and Gill, M., 1996, Impediments to Intrinsic Remediation, Moffett Field Naval Air Station, Conference on Intrinsic Remediation of Chlorinated Hydrocarbons, Salt Lake City.

**Hagemann, M.F.**, Fukunaga, G.L., 1996, The Vulnerability of Groundwater to Anthropogenic Contaminants on the Island of Maui, Hawaii. Hawaii Water Works Association Annual Meeting, Maui, October 1996.

**Hagemann, M. F.**, Fukanaga, G. L., 1996, Ranking Groundwater Vulnerability in Central Oahu, Hawaii. Proceedings, Geographic Information Systems in Environmental Resources Management, Air and Waste Management Association Publication VIP-61.

**Hagemann**, M.F., 1994. Groundwater Characterization and Cleanup at Closing Military Bases in California. Proceedings, California Groundwater Resources Association Meeting.

**Hagemann**, M.F. and Sabol, M.A., 1993. Role of the U.S. EPA in the High Plains States Groundwater Recharge Demonstration Program. Proceedings, Sixth Biennial Symposium on the Artificial Recharge of Groundwater.

**Hagemann, M.F.**, 1993. U.S. EPA Policy on the Technical Impracticability of the Cleanup of DNAPL-contaminated Groundwater. California Groundwater Resources Association Meeting.

**Hagemann, M.F.**, 1992. Dense Nonaqueous Phase Liquid Contamination of Groundwater: An Ounce of Prevention... Proceedings, Association of Engineering Geologists Annual Meeting, v. 35.

# Other Experience:

Selected as subject matter expert for the California Professional Geologist licensing examination, 2009-2011.